ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core–field orientation could be used to probe the relative significance of the magnetic field within the cloud. 
                        more » 
                        « less   
                    
                            
                            A Census of Outflow to Magnetic Field Orientations in Nearby Molecular Clouds
                        
                    
    
            Abstract We define a sample of 200 protostellar outflows showing blue- and redshifted CO emission in the nearby molecular clouds Ophiuchus, Taurus, Perseus, and Orion, to investigate the correlation between outflow orientations and local, but relatively large-scale, magnetic field directions traced by Planck 353 GHz dust polarization. At high significance ( p ∼ 10 −4 ), we exclude a random distribution of relative orientations and find that there is a preference for alignment of projected plane of sky outflow axes with magnetic field directions. The distribution of relative position angles peaks at ∼30° and exhibits a broad dispersion of ∼50°. These results indicate that magnetic fields have dynamical influence in regulating the launching and/or propagation directions of outflows. However, the significant dispersion around perfect alignment orientation implies that there are large measurement uncertainties and/or a high degree of intrinsic variation caused by other physical processes, such as turbulence or strong stellar dynamical interactions. Outflow to magnetic field alignment is expected to lead to a correlation in the directions of nearby outflow pairs, depending on the degree of order of the field. Analyzing this effect, we find limited correlation, except on relatively small scales ≲0.5 pc. Furthermore, we train a convolutional neural network to infer the inclination angle of outflows with respect to the line of sight and apply it to our outflow sample to estimate their full 3D orientations. We find that the angles between outflow pairs in 3D space also show evidence of small-scale alignment. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10385486
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 941
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 81
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT It is well known that the polarized continuum emission from magnetically aligned dust grains is determined to a large extent by local magnetic field structure. However, the observed significant anticorrelation between polarization fraction and column density may be strongly affected, perhaps even dominated by variations in grain alignment efficiency with local conditions, in contrast to standard assumptions of a spatially homogeneous grain alignment efficiency. Here we introduce a generic way to incorporate heterogeneous grain alignment into synthetic polarization observations of molecular clouds (MCs), through a simple model where the grain alignment efficiency depends on the local gas density as a power law. We justify the model using results derived from radiative torque alignment theory. The effects of power-law heterogeneous alignment models on synthetic observations of simulated MCs are presented. We find that the polarization fraction-column density correlation can be brought into agreement with observationally determined values through heterogeneous alignment, though there remains degeneracy with the relative strength of cloud-scale magnetized turbulence and the mean magnetic field orientation relative to the observer. We also find that the dispersion in polarization angles-polarization fraction correlation remains robustly correlated despite the simultaneous changes to both observables in the presence of heterogeneous alignment.more » « less
- 
            Abstract Magnetic fields may play a crucial role in setting the initial conditions of massive star and star cluster formation. To investigate this, we report SOFIA-HAWC+ 214μm observations of polarized thermal dust emission and high-resolution GBT-Argus C18O(1-0) observations toward the massive Infrared Dark Cloud (IRDC) G28.37+0.07. Considering the local dispersion ofB-field orientations, we produce a map of the B-field strength of the IRDC, which exhibits values between ∼0.03 and 1 mG based on a refined Davis–Chandrasekhar–Fermi method proposed by Skalidis & Tassis. Comparing to a map of inferred density, the IRDC exhibits aB–nrelation with a power-law index of 0.51 ± 0.02, which is consistent with a scenario of magnetically regulated anisotropic collapse. Consideration of the mass-to-flux ratio map indicates that magnetic fields are dynamically important in most regions of the IRDC. A virial analysis of a sample of massive, dense cores in the IRDC, including evaluation of magnetic and kinetic internal and surface terms, indicates consistency with virial equilibrium, sub-Alfvénic conditions, and a dominant role forB-fields in regulating collapse. A clear alignment of magnetic field morphology with the direction of the steepest column density gradient is also detected. However, there is no preferred orientation of protostellar outflow directions with theB-field. Overall, these results indicate that magnetic fields play a crucial role in regulating massive star and star cluster formation, and therefore they need to be accounted for in theoretical models of these processes.more » « less
- 
            We investigate the multi-phase structure of gas flows in galaxies. We study 80 galaxies during the epoch of peak star formation (1.4≤z≤2.7) using data from Keck/LRIS and VLT/KMOS. Our analysis provides a simultaneous probe of outflows using UV emission and absorption features and Hα emission. With this unprecedented data set, we examine the properties of gas flows estimated from LRIS and KMOS in relation to other galaxy properties, such as star formation rate (SFR), star formation rate surface density (ΣSFR), stellar mass (M∗), and main sequence offset (ΔMS). We find no strong correlations between outflow velocity measured from rest-UV lines centroids and galaxy properties. However, we find that galaxies with detected outflows show higher averages in SFR, ΣSFR, and ΔMS than those lacking outflow detections, indicating a connection between outflow and galaxy properties. Furthermore, we find a lower average outflow velocity than previously reported, suggesting greater absorption at the systemic redshift of the galaxy. Finally, we detect outflows in 49% of our LRIS sample and 30% in the KMOS sample, and find no significant correlation between outflow detection and inclination. These results may indicate that outflows are not collimated and that Hα outflows have a lower covering fraction than low-ionization interstellar absorption lines. Additionally, these tracers may be sensitive to different physical scales of outflow activity. A larger sample size with a wider dynamic range in galaxy properties is needed to further test this picture.more » « less
- 
            Abstract The tectonic stress field induces surface deformation. At long wavelengths, both lithospheric heterogeneity (changes in the thickness and density of crust and lithospheric mantle) and basal tractions from mantle convection contribute to the stress field. Here, we analyze the global alignment of principal horizontal tectonic stresses, fault traces, and river flow directions to infer whether and how deep subsurface stresses control geomorphic features. We find that fault trace orientations are consistent with predictions from Anderson's fault theory. River directions largely align with fault traces and partly with stresses. The degree of alignment depends on fault regime, the source of stress, and river order. Extensional faulting is best predicted by stresses from lithospheric structure variations, while compressive faulting is best predicted by stresses from mantle flow. We propose a metric to quantify the relative influence of mantle flow or lithospheric heterogeneity on surface features, which provides a proxy for lithospheric strength.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    