Abstract Feedback from massive stars plays an important role in the formation of star clusters. Whether a very massive star is born early or late in the cluster formation timeline has profound implications for the star cluster formation and assembly processes. We carry out a controlled experiment to characterize the effects of early-forming massive stars on star cluster formation. We use the star formation software suiteTorch, combining self-gravitating magnetohydrodynamics, ray-tracing radiative transfer,N-body dynamics, and stellar feedback, to model four initially identical 104M⊙giant molecular clouds with a Gaussian density profile peaking at 521.5 cm−3. Using theTorchsoftware suite through theAMUSEframework, we modify three of the models, to ensure that the first star that forms is very massive (50, 70, and 100M⊙). Early-forming massive stars disrupt the natal gas structure, resulting in fast evacuation of the gas from the star-forming region. The star formation rate is suppressed, reducing the total mass of the stars formed. Our fiducial control model, without an early massive star, has a larger star formation rate and total efficiency by up to a factor of 3, and a higher average star formation efficiency per freefall time by up to a factor of 7. Early-forming massive stars promote the buildup of spatially separate and gravitationally unbound subclusters, while the control model forms a single massive cluster. 
                        more » 
                        « less   
                    
                            
                            Polarized Light from Massive Protoclusters (POLIMAP). I. Dissecting the Role of Magnetic Fields in the Massive Infrared Dark Cloud G28.37+0.07
                        
                    
    
            Abstract Magnetic fields may play a crucial role in setting the initial conditions of massive star and star cluster formation. To investigate this, we report SOFIA-HAWC+ 214μm observations of polarized thermal dust emission and high-resolution GBT-Argus C18O(1-0) observations toward the massive Infrared Dark Cloud (IRDC) G28.37+0.07. Considering the local dispersion ofB-field orientations, we produce a map of the B-field strength of the IRDC, which exhibits values between ∼0.03 and 1 mG based on a refined Davis–Chandrasekhar–Fermi method proposed by Skalidis & Tassis. Comparing to a map of inferred density, the IRDC exhibits aB–nrelation with a power-law index of 0.51 ± 0.02, which is consistent with a scenario of magnetically regulated anisotropic collapse. Consideration of the mass-to-flux ratio map indicates that magnetic fields are dynamically important in most regions of the IRDC. A virial analysis of a sample of massive, dense cores in the IRDC, including evaluation of magnetic and kinetic internal and surface terms, indicates consistency with virial equilibrium, sub-Alfvénic conditions, and a dominant role forB-fields in regulating collapse. A clear alignment of magnetic field morphology with the direction of the steepest column density gradient is also detected. However, there is no preferred orientation of protostellar outflow directions with theB-field. Overall, these results indicate that magnetic fields play a crucial role in regulating massive star and star cluster formation, and therefore they need to be accounted for in theoretical models of these processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009674
- PAR ID:
- 10569833
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 967
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present Stratospheric Observatory For Infrared Astronomy (SOFIA) + Atacama Large Millimeter/submillimeter Array (ALMA) continuum and spectral-line polarization data on the massive molecular cloud BYF 73, revealing important details about the magnetic field morphology, gas structures, and energetics in this unusual massive star formation laboratory. The 154μm HAWC+ polarization map finds a highly organized magnetic field in the densest, inner 0.55 × 0.40 pc portion of the cloud, compared to an unremarkable morphology in the cloud’s outer layers. The 3 mm continuum ALMA polarization data reveal several more structures in the inner domain, including a parsec-long, ∼500M⊙“Streamer” around the central massive protostellar object MIR 2, with magnetic fields mostly parallel to the east–west Streamer but oriented north–south across MIR 2. The magnetic field orientation changes from mostly parallel to the column density structures to mostly perpendicular, at thresholdsNcrit= 6.6 × 1026m−2,ncrit= 2.5 × 1011m−3, andBcrit= 42 ± 7 nT. ALMA also mapped Goldreich–Kylafis polarization in12CO across the cloud, which traces, in both total intensity and polarized flux, a powerful bipolar outflow from MIR 2 that interacts strongly with the Streamer. The magnetic field is also strongly aligned along the outflow direction; energetically, it may dominate the outflow near MIR 2, comprising rare evidence for a magnetocentrifugal origin to such outflows. A portion of the Streamer may be in Keplerian rotation around MIR 2, implying a gravitating mass 1350 ± 50M⊙for the protostar+disk+envelope; alternatively, these kinematics can be explained by gas in free-fall toward a 950 ± 35M⊙object. The high accretion rate onto MIR 2 apparently occurs through the Streamer/disk, and could account for ∼33% of MIR 2's total luminosity via gravitational energy release.more » « less
- 
            Abstract Due to dust grain alignment with magnetic fields, dust polarization observations of far-infrared emission from cold molecular clouds are often used to trace magnetic fields, allowing a probe of the effects of magnetic fields on the star formation process. We present inferred magnetic field maps of the Pillars of Creation region within the larger M16 emission nebula, derived from dust polarization data in the 89 and 154μm continuum using the Stratospheric Observatory For Infrared Astronomy/High-resolution Airborne Wideband Camera. We derive magnetic field strength estimates using the Davis–Chandrasekhar–Fermi method. We compare the polarization and magnetic field strengths to column densities and dust continuum intensities across the region to build a coherent picture of the relationship between star-forming activity and magnetic fields in the region. The projected magnetic field strengths derived are in the range of ∼50–130μG, which is typical for clouds of similarn(H2), i.e., molecular hydrogen volume density on the order of 104–105cm−3. We conclude that star formation occurs in the finger tips when the magnetic fields are too weak to prevent radial collapse due to gravity but strong enough to oppose OB stellar radiation pressure, while in the base of the fingers the magnetic fields hinder mass accretion and consequently star formation. We also support an initial weak-field model (<50μG) with subsequent strengthening through realignment and compression, resulting in a dynamically important magnetic field.more » « less
- 
            Mass segregation is seen in many star clusters, but whether massive stars form in the center of a cluster or migrate there dynamically is still debated.N-body simulations show that early dynamical mass segregation is possible when sub-clusters merge to form a dense core with a small crossing time. However, the effect of gas dynamics on both the formation and dynamics of the stars could inhibit the formation of the dense core. We aim to study the dynamical mass segregation of star cluster models that include gas dynamics and selfconsistently form stars from the dense substructure in the gas. Our models use the TORCH framework, which is based on AMUSE and includes stellar and magnetized gas dynamics, as well as stellar evolution and feedback from radiation, stellar winds, and supernovae. Our models consist of three star clusters forming from initial turbulent spherical clouds of mass 104, 105, 106M⊙and radius 11.7 pc that have final stellar masses of 3.6 × 103M⊙, 6.5 × 104M⊙, and 8.9 × 105M⊙, respectively. There is no primordial mass segregation in the model by construction. All three clusters become dynamically mass segregated at early times via collapse confirming that this mechanism occurs within sub-clusters forming directly out of the dense substructure in the gas. The dynamics of the embedded gas and stellar feedback do not inhibit the collapse of the cluster. We find that each model cluster becomes mass segregated within 2 Myr of the onset of star formation, reaching the levels observed in young clusters in the Milky Way. However, we note that the exact values are highly time-variable during these early phases of evolution. Massive stars that segregate to the center during core collapse are likely to be dynamically ejected, a process that can decrease the overall level of mass segregation again.more » « less
- 
            Dense gas in molecular clouds is an important signature of ongoing and future star formation. We identify and track dense cores in the Starforge simulations, following the core evolution from birth through dispersal by stellar feedback for typical Milky Way cloud conditions. Only ∼8% of cores host protostars, and most disperse before forming stars. The median starless and protostellar core lifetimes are ∼0.5–0.6 Myr and ∼0.8–1.1 Myr, respectively, where the protostellar phase lasts 0.1 Myr. While core evolution is stochastic, we find that virial ratios and line widths decline in prestellar cores, coincident with turbulent decay. Collapse occurs over ∼0.1 Myr, once the central density exceeds ≳106cm−3. Starless cores, only, follow line-width–size and mass–size relations,σ∝R0.3andM∝R1. The core median mass, radius, and velocity dispersion scale weakly with the cloud magnetic field strength. We cluster the core properties and find that protostellar cores have >80% likelihood of belonging to three particular groups that are characterized by high central densities, compact radii, and lower virial parameters. Overall, core evolution appears to be universally set by the interplay of gravity and magnetized turbulence, while stellar feedback dictates protostellar core properties and sets the protostellar phase lifetime.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    