skip to main content

Title: Bayesian jackknife tests with a small number of subsets: application to HERA 21 cm power spectrum upper limits

We present a Bayesian jackknife test for assessing the probability that a data set contains biased subsets, and, if so, which of the subsets are likely to be biased. The test can be used to assess the presence and likely source of statistical tension between different measurements of the same quantities in an automated manner. Under certain broadly applicable assumptions, the test is analytically tractable. We also provide an open-source code, chiborg, that performs both analytic and numerical computations of the test on general Gaussian-distributed data. After exploring the information theoretical aspects of the test and its performance with an array of simulations, we apply it to data from the Hydrogen Epoch of Reionization Array (HERA) to assess whether different sub-seasons of observing can justifiably be combined to produce a deeper 21 cm power spectrum upper limit. We find that, with a handful of exceptions, the HERA data in question are statistically consistent and this decision is justified. We conclude by pointing out the wide applicability of this test, including to CMB experiments and the H0 tension.

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 6041-6058
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Combining the visibilities measured by an interferometer to form a cosmological power spectrum is a complicated process. In a delay-based analysis, the mapping between instrumental and cosmological space is not a one-to-one relation. Instead, neighbouring modes contribute to the power measured at one point, with their respective contributions encoded in the window functions. To better understand the power measured by an interferometer, we assess the impact of instrument characteristics and analysis choices on these window functions. Focusing on the Hydrogen Epoch of Reionization Array (HERA) as a case study, we find that long-baseline observations correspond to enhanced low-k tails of the window functions, which facilitate foreground leakage, whilst an informed choice of bandwidth and frequency taper can reduce said tails. With simple test cases and realistic simulations, we show that, apart from tracing mode mixing, the window functions help accurately reconstruct the power spectrum estimator of simulated visibilities. The window functions depend strongly on the beam chromaticity and less on its spatial structure – a Gaussian approximation, ignoring side lobes, is sufficient. Finally, we investigate the potential of asymmetric window functions, down-weighting the contribution of low-k power to avoid foreground leakage. The window functions presented here correspond to themore »latest HERA upper limits for the full Phase I data. They allow an accurate reconstruction of the power spectrum measured by the instrument and will be used in future analyses to confront theoretical models and data directly in cylindrical space.

    « less

    Many transient and variable sources detected at multiple wavelengths are also observed to vary at radio frequencies. However, these samples are typically biased towards sources that are initially detected in wide-field optical, X-ray, or gamma-ray surveys. Many sources that are insufficiently bright at higher frequencies are therefore missed, leading to potential gaps in our knowledge of these sources and missing populations that are not detectable in optical, X-rays, or gamma-rays. Taking advantage of new state-of-the-art radio facilities that provide high-quality wide-field images with fast survey speeds, we can now conduct unbiased surveys for transient and variable sources at radio frequencies. In this paper, we present an unbiased survey using observations obtained by MeerKAT, a mid-frequency (∼GHz) radio array in South Africa’s Karoo Desert. The observations used were obtained as part of a weekly monitoring campaign for X-ray binaries (XRBs) and we focus on the field of MAXI J1820+070. We develop methods to efficiently filter transient and variable candidates that can be directly applied to other data sets. In addition to MAXI J1820+070, we identify four likely active galactic nuclei, one source that could be a Galactic source (pulsar or quiescent XRB) or an AGN, and one variable pulsar. Nomore »transient sources, defined as being undetected in deep images, were identified leading to a transient surface density of <3.7 × 10−2 deg−2 at a sensitivity of 1 mJy on time-scales of 1 week at 1.4 GHz.

    « less
  3. Background

    Decision aids can help patients make medical decisions, which is especially advantageous in situations with equipoise. However, when there is no correct answer, it is difficult to assess whether a decision aid is helpful. The goal of this research is to propose and validate an objective method for measuring decision aid effectiveness by quantifying the clarity participants achieved when making decisions.


    The measure of decisional clarity was tested in a convenience sample of 131 college-aged students making hypothetical decisions about 2 treatment options for depression and anxiety. The treatments varied with respect to potential benefits and harms. Information was presented numerically or with an accompanying data visualization (an icon array) that is known to aid decision making.


    Decisional clarity was better with the icon arrays. Furthermore, the results showed that decisional clarity can be used to identify situations for which patients will be more likely to struggle making their decision. These included situations for which financial considerations were relevant to the decision and situations for which the probabilities of potential benefits were higher.


    The measure of decisional clarity and the situations identified as lacking clarity should be validated with a larger, more representative sample.


    These findings demonstrate that decisional claritymore »can be used to both empirically evaluate the effectiveness of a decision aid as well as test factors that can cloud clarity and disrupt medical decision making.


    Researchers and medical providers interested in developing decision aids for situations with equipoise can use decisional clarity as an objective measure to assess the effectiveness of their decision aid. Financial considerations and higher probabilities may also cloud judgments.


    An objective measure of decisional clarity is supported. Decisional clarity can be used to evaluate decision aids in the context of equipoise for which there is no objectively correct choice. Decisional clarity can also be used to identify scenarios for which patients are likely to struggle to make a medical decision.

    « less

    Measurements of the one-point probability distribution function and higher-order moments (variance, skewness, and kurtosis) of the high-redshift 21-cm fluctuations are among the most direct statistical probes of the non-Gaussian nature of structure formation and evolution during re-ionization. However, contamination from astrophysical foregrounds and instrument systematics pose significant challenges in measuring these statistics in real observations. In this work, we use forward modelling to investigate the feasibility of measuring 21-cm one-point statistics through a foreground avoidance strategy. Leveraging the characteristic wedge-shape of the foregrounds in k-space, we apply a wedge-cut filtre that removes the foreground contaminated modes from a mock data set based on the Hydrogen Epoch of Re-ionization Array (HERA) instrument, and measure the one-point statistics from the image-space representation of the remaining non-contaminated modes. We experiment with varying degrees of wedge-cutting over different frequency bandwidths and find that the centre of the band is the least susceptible to bias from wedge-cutting. Based on this finding, we introduce a rolling filtre method that allows reconstruction of an optimal wedge-cut 21-cm intensity map over the full bandwidth using outputs from wedge-cutting over multiple sub-bands. We perform Monte Carlo simulations to show that HERA should be able to measure the risemore »in skewness and kurtosis near the end of re-ionization with the rolling wedge-cut method if foreground leakage from the Fourier transform window function can be controlled.

    « less
  5. Abstract

    Recently, many different pulsar timing array (PTA) collaborations have reported strong evidence for a common stochastic process in their data sets. The reported amplitudes are in tension with previously computed upper limits. In this paper, we investigate how using a subset of a set of pulsars biases Bayesian upper limit recovery. We generate 500 simulated PTA data sets, based on the NANOGrav 11 yr data set with an injected stochastic gravitational-wave background (GWB). We then compute the upper limits by sampling the individual pulsar likelihoods, and combine them through a factorized version of the PTA likelihood to obtain upper limits on the GWB amplitude, using different numbers of pulsars. We find that it is possible to recover an upper limit (95% credible interval) below the injected value, and that it is significantly more likely for this to occur when using a subset of pulsars to compute the upper limit. When picking pulsars to induce the maximum possible bias, we find that the 95% Bayesian upper limit recovered is below the injected value in 10.6% of the realizations (53 of 500). Further, we find that if we choose a subset of pulsars in order to obtain a lower upper limitmore »than when using the full set of pulsars, the distribution of the upper limits obtained from these 500 realizations is shifted to lower-amplitude values.

    « less