skip to main content


Title: Ultraviolet spectropolarimetry with polstar: interstellar medium science
Abstract

Continuum polarization over the UV-to-microwave range is due to dichroic extinction (or emission) by asymmetric, aligned dust grains. Scattering can also be an important source of polarization, especially at short wavelengths. Because of both grain alignment and scattering physics, the wavelength dependence of the polarization, generally, traces the size of the aligned grains. Similarly because of the differing wavelength dependencies of dichroic extinction and scattering polarization, the two can generally be reliably separated. Ultraviolet (UV) polarimetry therefore provides a unique probe of the smallest dust grains (diameter$< 0.09~\upmu \text{m}$<0.09μm), their mineralogy and interaction with the environment. However, the current observational status of interstellar UV polarization is very poor with less than 30 lines of sight probed. With the modern, quantitative and well-tested, theory of interstellar grain alignment now available, we have the opportunity to advance the understanding of the interstellar medium (ISM) by executing a systematic study of the UV polarization in the ISM of the Milky Way and near-by galaxies. The Polstar mission will provide the sensitivity and observing time needed to carry out such a program (probing hundreds of stars in the Milky Way and dozens of stars in the LMC/SMC), addressing questions of dust composition as a function of size and location, radiation- and magnetic-field characteristics as well as unveiling the carrier of the 2175 Å extinction feature. In addition, using high-resolution UV line spectroscopy Polstar will search for and probe the alignment of, and polarization from, aligned atoms and ions - so called “Ground State Alignment”, a potentially powerful new probe of magnetic fields in the diffuse ISM.

 
more » « less
Award ID(s):
1715867
NSF-PAR ID:
10385533
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Astrophysics and Space Science
Volume:
367
Issue:
12
ISSN:
0004-640X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dust-induced polarization in the interstellar medium (ISM) is due to asymmetric grains aligned with an external reference direction, usually the magnetic field. For both the leading alignment theories, the alignment of the grain’s angular momentum with one of its principal axes and the coupling with the magnetic field requires the grain to be paramagnetic. Of the two main components of interstellar dust, silicates are paramagnetic, while carbon dust is diamagnetic. Hence, carbon grains are not expected to align in the ISM. To probe the physics of carbon grain alignment, we have acquired Stratospheric Observatory for Infrared Astronomy/Higch-resolution Airborne Wideband Camera-plus far-infrared photometry and polarimetry of the carbon-rich circumstellar envelope (CSE) of the asymptotic giant branch star IRC+10° 216. The dust in such CSEs are fully carbonaceous and thus provide unique laboratories for probing carbon grain alignment. We find a centrosymmetric, radial, polarization pattern, where the polarization fraction is well correlated with the dust temperature. Together with estimates of a low fractional polarization from optical polarization of background stars, we interpret these results to be due to a second-order, direct radiative external alignment of grains without internal alignment. Our results indicate that (pure) carbon dust does not contribute significantly to the observed ISM polarization, consistent with the nondetection of polarization in the 3.4μm feature due to aliphatic CH bonds on the grain surface.

     
    more » « less
  2. Abstract

    The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$±1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$νe,νμ,ντ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$109-1015cm-2GW-1have been obtained in the 0.5–5 MeV neutrino energy range.

     
    more » « less
  3. Abstract

    Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016–2018 is used, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The signal strength modifier$$\mu $$μ, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be$$\mu = 0.95^{+0.10}_{-0.09}$$μ=0.95-0.09+0.10. All results are found to be compatible with the standard model within the uncertainties.

     
    more » « less
  4. Abstract

    Metal-poor stars in the Milky Way (MW) halo display large star-to-star dispersion in theirr-process abundance relative to lighter elements. This suggests a chemically diverse and unmixed interstellar medium (ISM) in the early universe. This study aims to help shed light on the impact of turbulent mixing, driven by core-collapse supernovae (cc-SNe), on ther-process abundance dispersal in galactic disks. To this end, we conduct a series of simulations of small-scale galaxy patches which resolve metal-mixing mechanisms at parsec scales. Our setup includes cc-SNe feedback and enrichment fromr-process sources. We find that the relative rate of ther-process events to cc-SNe is directly imprinted on the shape of ther-process distribution in the ISM with more frequent events causing more centrally peaked distributions. We consider also the fraction of metals that is lost on galactic winds and find that cc-SNe are able to efficiently launch highly enriched winds, especially in smaller galaxy models. This result suggests that smaller systems, e.g., dwarf galaxies, may require higher levels of enrichment in order to achieve similar meanr-process abundances as MW-like progenitors systems. Finally, we are able to place novel constraints on the production rate ofr-process elements in the MW,6×107Myr1ṁrp4.7×104Myr1, imposed by accurately reproducing the mean and dispersion of [Eu/Fe] in metal-poor stars. Our results are consistent with independent estimates from alternate methods and constitute a significant reduction in the permitted parameter space.

     
    more » « less
  5. Abstract

    OB stars powering stellar bowshock nebulae (SBNe) have been presumed to have large peculiar velocities. We measured peculiar velocities of SBN central stars to assess their kinematics relative to the general O-star population using Gaia EDR3 data for 267 SBN central stars and a sample of 455 Galactic O stars to derive projected velocitiesv2D. For a subset of each sample, we obtained new optical spectroscopy to measure radial velocities and identify multiple-star systems. We find a minimum multiplicity fraction of 36% ± 6% among SBN central stars, consistent with >28% among runaway Galactic O stars. The large multiplicity fraction among runaways implicates very efficient dynamical ejection rather than binary-supernova origins. The medianv2Dof SBN central stars isv2D= 14.6 km s−1, larger than the medianv2D= 11.4 km s−1for non-bowshock O stars. Central stars of SBNe have a runaway (v2D> 25 km s−1) fraction of 247+9%, consistent with the223+3% for control-sample O stars. Most (76%) SBNe central stars are not runaways. Our analysis of alignment (ΔPA) between the nebular morphological andv2Dkinematic position angles reveals two populations: a highly aligned (σPA= 25°) population that includes stars with the largestv2D(31% of the sample) and a random (nonaligned) population (69%). SBNe that lie within or near Hiiregions comprise a larger fraction of this latter component than SBNe in isolated environments, implicating localized ISM flows as a factor shaping their orientations and morphologies. We outline a new conceptual approach to computing the solar local standard of rest motion, yielding [U,V,W] = [5.5, 7.5,4.5] km s−1.

     
    more » « less