skip to main content


Title: Thermal emission and scattering by aligned grains: Plane-parallel model and application to multiwavelength polarization of the HL Tau disc
ABSTRACT

Telescopes are now able to resolve dust polarization across circumstellar discs at multiple wavelengths, allowing the study of the polarization spectrum. Most discs show clear evidence of dust scattering through their unidirectional polarization pattern typically at the shorter wavelength of $\sim 870 \, \mu$m. However, certain discs show an elliptical pattern at ∼3 mm, which is likely due to aligned grains. With HL Tau, its polarization pattern at ∼1.3 mm shows a transition between the two patterns making it the first example to reveal such transition. We use the T-matrix method to model elongated dust grains and properly treat scattering of aligned non-spherical grains with a plane-parallel slab model. We demonstrate that a change in optical depth can naturally explain the polarization transition of HL Tau. At low optical depths, the thermal polarization dominates, while at high optical depths, dichroic extinction effectively takes out the thermal polarization and scattering polarization dominates. Motivated by results from the plane-parallel slab, we develop a simple technique to disentangle thermal polarization of the aligned grains T0 and polarization due to scattering S using the azimuthal variation of the polarization fraction. We find that, with increasing wavelength, the fractional polarization spectrum of the scattering component S decreases, while the thermal component T0 increases, which is expected since the optical depth decreases. We find several other sources similar to HL Tau that can be explained by azimuthally aligned scattering prolate grains when including optical depth effects. In addition, we explore how spirally aligned grains with scattering can appear in polarization images.

 
more » « less
Award ID(s):
1910106 1910364
NSF-PAR ID:
10365864
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3922-3947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The size of dust grains, a, is key to the physical and chemical processes in circumstellar discs, but observational constraints of grain size remain challenging. (Sub)millimetre continuum observations often show a per cent-level polarization parallel to the disc minor axis, which is generally attributed to scattering by ${\sim}100\, \mu{\rm m}$-sized spherical grains (with a size parameter x ≡ 2$\pi$a/λ < 1, where λ is the wavelength). Larger spherical grains (with x greater than unity) would produce opposite polarization direction. However, the inferred size is in tension with the opacity index β that points to larger mm/cm-sized grains. We investigate the scattering-produced polarization by large irregular grains with a range of x greater than unity with optical properties obtained from laboratory experiments. Using the radiation transfer code, RADMC-3D, we find that large irregular grains still produce polarization parallel to the disc minor axis. If the original forsterite refractive index in the optical is adopted, then all samples can produce the typically observed level of polarization. Accounting for the more commonly adopted refractive index using the DSHARP dust model, only grains with x of several (corresponding to ∼mm-sized grains) can reach the same polarization level. Our results suggest that grains in discs can have sizes in the millimetre regime, which may alleviate the tension between the grain sizes inferred from scattering and other means. Additionally, if large irregular grains are not settled to the mid-plane, their strong forward scattering can produce asymmetries between the near and far side of an inclined disc, which can be used to infer their presence.

     
    more » « less
  2. Abstract

    Millimeter and submillimeter observations of continuum linear dust polarization provide insight into dust grain growth in protoplanetary disks, which are the progenitors of planetary systems. We present the results of the first survey of dust polarization in protoplanetary disks at 870μm and 3 mm. We find that protoplanetary disks in the same molecular cloud at similar evolutionary stages can exhibit different correlations between observing wavelength and polarization morphology and fraction. We explore possible origins for these differences in polarization, including differences in dust populations and protostar properties. For RY Tau and MWC 480, which are consistent with scattering at both wavelengths, we present models of the scattering polarization from several dust grain size distributions. These models aim to reproduce two features of the observational results for these disks: (1) both disks have an observable degree of polarization at both wavelengths; and (2) the polarization fraction is higher at 3 mm than at 870μm in the centers of the disks. For both disks, these features can be reproduced by a power-law distribution of spherical dust grains with a maximum radius of 200μm and high optical depth. In MWC 480, we can also reproduce features (1) and (2) with a model containing large grains (amax= 490μm) near the disk midplane and small grains (amax= 140μm) above and below the midplane.

     
    more » « less
  3. ABSTRACT Polarized continuum emission from aligned grains in discs around young stellar objects can be used to probe the magnetic field, radiation anisotropy, or drift between dust and gas, depending on whether the non-spherical grains are aligned magnetically, radiatively, or mechanically. We show that it can also be used to probe another key disc property – the temperature gradient – along sightlines that are optically thick, independent of the grain alignment mechanism. We first illustrate the technique analytically using a simple 1D slab model, which yields an approximate formula that relates the polarization fraction to the temperature gradient with respect to the optical depth τ at the τ = 1 surface. The formula is then validated using models of stellar irradiated discs with and without accretion heating. The promises and challenges of the technique are illustrated with a number of Class 0 and I discs with ALMA dust polarization data, including NGC 1333 IRAS4A1, IRAS 16293B, BHB 07-11, L1527, HH 212, and HH 111. We find, in particular, that the sightlines passing through the near-side of a highly inclined disc trace different temperature gradient directions than those through the far-side, which can lead to a polarization orientation on the near-side that is orthogonal to that on the far-side, and that the HH 111 disc may be such a case. Our technique for probing the disc temperature gradient through dust polarization can complement other methods, particularly those using molecular lines. 
    more » « less
  4. ABSTRACT A number of young circumstellar discs show strikingly ordered (sub)millimetre polarization orientations along the minor axis, which is strong evidence for polarization due to scattering by ∼0.1 mm-sized grains. To test this mechanism further, we model the ALMA dust continuum and polarization data of HD 163296 using radmc-3d. We find that scattering by grains with a maximum size of 90  μm simultaneously reproduces the polarization observed at Band 7 and the unusually low spectral index (α ∼ 1.5) between Bands 7 and 6 in the optically thick inner disc as a result of more efficient scattering at the shorter wavelength. The low spectral index of ∼2.5 inferred for the optically thin gaps is reproduced by the same grains, as a result of telescope beam averaging of the gaps (with an intrinsic α ∼ 4) and their adjacent optically thick rings (where α ≲ 2). The tension between the grain sizes inferred from polarization and spectral index disappears because the low α values do not require large mm-sized grains. In addition, the polarization fraction has a unique azimuthal variation: higher along the major axis than the minor axis in the gaps, but vice versa in the rings. We find a rapidly declining polarization spectrum (with p ∝ λ−3 approximately) in the gaps, which becomes flattened or even inverted towards short wavelengths in the optically thick rings. These contrasting behaviours in the rings and gaps provide further tests for scattering-induced polarization via resolved multiwavelength observations. 
    more » « less
  5. Abstract

    Dust particle sizes constrained from dust continuum and polarization observations by radio interferometry are inconsistent by at least an order of magnitude. Motivated by porous dust observed in small solar system bodies (e.g., from the Rosetta mission), we explore how the dust particle’s porosity affects the estimated particle sizes from these two methods. Porous particles have lower refractive indices, which affect both opacity and polarization fraction. With weaker Mie interference patterns, the porous particles have lower opacity at millimeter wavelengths than the compact particles if the particle size exceeds several hundred microns. Consequently, the inferred dust mass using porous particles can be up to a factor of six higher. The most significant difference between compact and porous particles is their scattering properties. The porous particles have a wider range of particle sizes with high linear polarization from dust self-scattering, allowing millimeter- to centimeter-sized particles to explain polarization observations. With a Bayesian approach, we use porous particles to fit HL Tau disk’s multiwavelength continuum and millimeter-polarization observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA). The moderately porous particles with sizes from 1 mm–1 m can explain both continuum and polarization observations, especially in the region between 20 and 60 au. If the particles in HL Tau are porous, the porosity should be from 70%–97% from current polarization observations. We also predict that future observations of the self-scattering linear polarization at longer wavelengths (e.g., ALMA B1 and ngVLA) have the potential to further constrain the particle’s porosity and size.

     
    more » « less