skip to main content


Title: Phylogenomics of paleoendemic lampshade spiders (Araneae, Hypochilidae, Hypochilus), with the description of a new species from montane California
Hypochilus is a relictual lineage of Nearctic spiders distributed disjunctly across the United States in three montane regions (California, southern Rocky Mountains, southern Appalachia). Phylogenetic resolution of species relationships in Hypochilus has been challenging, and conserved morphology coupled with extreme genetic divergence has led to uncertain species limits in some complexes. Here, Hypochilus interspecies relationships have been reconstructed and cryptic speciation more critically evaluated using a combination of ultraconserved elements, mitochondrial CO1 by-catch, and morphology. Phylogenomic data strongly support the monophyly of regional clades and support a ((California, Appalachia), southern Rocky Mountains) topology. In Appalachia, five species are resolved as four lineages ( H. thorelli Marx, 1888 and H. coylei Platnick, 1987 are clearly sister taxa), but the interrelationships of these four lineages remain unresolved. The Appalachian species H. pococki Platnick, 1987 is recovered as monophyletic but is highly genetically structured at the nuclear level. While algorithmic analyses of nuclear data indicate many species (e.g., all H. pococki populations as species), male morphology instead reveals striking stasis. Within the California clade, nuclear and mitochondrial lineages of H. petrunkevitchi Gertsch, 1958 correspond directly to drainage basins of the southern Sierra Nevada, with H. bernardino Catley, 1994 nested within H. petrunkevitchi and sister to the southernmost basin populations. Combining nuclear, mitochondrial, geographical, and morphological evidence a new species from the Tule River and Cedar Creek drainages is described, Hypochilus xomote sp. nov. We also emphasize the conservation issues that face several microendemic, habitat-specialized species in this remarkable genus.  more » « less
Award ID(s):
1937725
NSF-PAR ID:
10385545
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ZooKeys
Volume:
1086
ISSN:
1313-2989
Page Range / eLocation ID:
163 to 204
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee,Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Rocky Mountain'’ color form with ferruginous mid‐abdominal segments (B.m.melanopygus) and a southern “Pacific'’ form with black mid‐abdominal segments (B.m.edwardsii). These morphs meet in a mimetic transition zone in northern California and southern Oregon that is more narrow and transitions further west than comimetic bumble bee species. To understand the historical formation of this mimicry zone, we assessed color distribution data forB.melanopygusfrom the last 100 years. We then examined gene flow among the color forms in the transition zone by comparing sequences from mitochondrial COI barcode sequences, color‐controlling loci, and the rest of the nuclear genome. These data support two geographically distinct mitochondrial haplogroups aligned to the ancestrally ferruginous and black forms that meet within the color transition zone. This clustering is also supported by the nuclear genome, which, while showing strong admixture across individuals, distinguishes individuals most by their mitochondrial haplotype, followed by geography. These data suggest the two lineages most likely were historically isolated, acquired fixed color differences, and then came into secondary contact with ongoing gene flow. The transition zone, however, exhibits asymmetries: mitochondrial haplotypes transition further south than color pattern, and both transition over shorter distances in the south. This system thus demonstrates alternative patterns of gene flow that occur in contact zones, presenting another example of mito‐nuclear discordance. Discordant gene flow is inferred to most likely be driven by a combination of mimetic selection, dominance effects, and assortative mating.

     
    more » « less
  2. Abstract

    Multiple highly divergent lineages have been identified withinLigia occidentalis sensu lato, a rocky supralittoral isopod distributed along a ~3000 km latitudinal gradient that encompasses several proposed marine biogeographic provinces and ecoregions in the eastern Pacific. Highly divergent lineages have nonoverlapping geographic distributions, with distributional limits that generally correspond with sharp environmental changes. Crossbreeding experiments suggest postmating reproductive barriers exist among some of them, and surveys of mitochondrial and nuclear gene markers do not show evidence of hybridization. Populations are highly isolated, some of which appear to be very small; thus, the effects of drift are expected to reduce the efficiency of selection. Large genetic divergences among lineages, marked environmental differences in their ranges, reproductive isolation, and/or high isolation of populations may have resulted in morphological differences inL. occidentalis, not detected yet by traditional taxonomy. We used landmark‐based geometric morphometric analyses to test for differences in body shape among highly divergent lineages ofL. occidentalis, and among populations within these lineages. We analyzed a total of 492 individuals from 53 coastal localities from the southern California Bight to Central Mexico, including the Gulf of California. We conducted discriminant function analyses (DFAs) on body shape morphometrics to assess morphological variation among genetically differentiated lineages and their populations. We also tested for associations between phylogeny and morphological variation, and whether genetic divergence is correlated to multivariate morphological divergence. We detected significant differences in body shape among highly divergent lineages, and among populations within these lineages. Nonetheless, neither lineages nor populations can be discriminated on the basis of body shape, because correct classification rates of cross‐validatedDFAs were low. Genetic distance and phylogeny had weak to no effect on body shape variation. The supralittoral environment appears to exert strong stabilizing selection and/or strong functional constraints on body shape inL. occidentalis, thereby leading to morphological stasis in this isopod.

     
    more » « less
  3. Abstract Background

    Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada.

    Results

    Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’sDwas positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide.

    Conclusions

    Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.

     
    more » « less
  4. Abstract

    Phylogeographic studies can uncover robust details about the population structure, demographics, and diversity of species. The smooth greensnake, Opheodrys vernalis, is a small, cryptic snake occupying mesic grassland and sparsely wooded habitats. Although O. vernalis has a wide geographical range, many metapopulations are patchy and some are declining. We used mitochondrial DNA and double digest restriction-site associated DNA sequencing to construct the first phylogeographic assessment of O. vernalis. Genomic analysis of 119 individuals (mitochondrial DNA) and a subset of another 45 smooth greensnakes (nuclear DNA; N = 3031 single nucleotide polymorphisms) strongly supports two longitudinally separated lineages, with admixture in the Great Lakes region. Post-Pleistocene secondary contact best explains admixture from populations advancing northwards. Overall, populations expressed low heterozygosity, variable inbreeding rates, and moderate to high differentiation. Disjunct populations in the Rocky Mountains and central Great Plains regions might be contracting relicts, whereas northerly populations in more continuous mesic habitats (e.g., Prairie Pothole region, southern Canada) had signals of population expansion. Broadly, conservation management efforts should be focused on local populations, because habitat connectivity may facilitate gene flow and genetic diversity.

     
    more » « less
  5. Abstract

    Populus tremuloidesis the widest‐ranging tree species in North America and an ecologically important component of mesic forest ecosystems displaced by the Pleistocene glaciations. Using phylogeographic analyses of genome‐wide SNPs (34,796 SNPs, 183 individuals) and ecological niche modeling, we inferred population structure, ploidy levels, admixture, and Pleistocene range dynamics ofP. tremuloides, and tested several historical biogeographical hypotheses. We found three genetic lineages located mainly in coastal–Cascades (cluster 1), east‐slope Cascades–Sierra Nevadas–Northern Rockies (cluster 2), and U.S. Rocky Mountains through southern Canadian (cluster 3) regions of theP. tremuloidesrange, with tree graph relationships of the form ((cluster 1, cluster 2), cluster 3). Populations consisted mainly of diploids (86%) but also small numbers of triploids (12%) and tetraploids (1%), and ploidy did not adversely affect our genetic inferences. The main vector of admixture was from cluster 3 into cluster 2, with the admixture zone trending northwest through the Rocky Mountains along a recognized phenotypic cline (Utah to Idaho). Clusters 1 and 2 provided strong support for the “stable‐edge hypothesis” that unglaciated southwestern populations persisted in situ since the last glaciation. By contrast, despite a lack of clinal genetic variation, cluster 3 exhibited “trailing‐edge” dynamics from niche suitability predictions signifying complete northward postglacial expansion. Results were also consistent with the “inland dispersal hypothesis” predicting postglacial assembly of Pacific Northwestern forest ecosystems, but rejected the hypothesis that Pacific‐coastal populations were colonized during outburst flooding from glacial Lake Missoula. Overall, congruent patterns between our phylogeographic and ecological niche modeling results and fossil pollen data demonstrate complex mixtures of stable‐edge, refugial locations, and postglacial expansion withinP. tremuloides. These findings confirm and refine previous genetic studies, while strongly supporting a distinct Pacific‐coastal genetic lineage of quaking aspen.

     
    more » « less