skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Near Peer Mentoring Affects Middle School Mentees
In response to the national demand to increase participation in CS, we argue that youth’s interest in computer science (CS) can be sparked by providing them with role models who are relatable and who resonate with their identities. To that end, we developed a mentoring model in which we train high schoolers to be near-peer mentors for middle schoolers learning to program in summer camps. In this paper, we present results from a mixed-methods study where we examined the relationship between mentor relatability and middle school campers’ self-efficacy and interest in CS. Pre- and post-surveys were used to measure campers’ affective outcomes around computing and mentor relatability. In addition, interviews and observations were used to illustrate the mechanisms that led to change in affect. Our findings suggest that mentor relatability is a significant predictor of campers’ self-efficacy and interest in CS. Results from the qualitative data further exemplify how mentor relatability was perceived and manifested in the camps.  more » « less
Award ID(s):
1614849
PAR ID:
10385561
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
SIGCSE '18: Proceedings of the 49th ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
664 to 669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Our work is situated in research on Computer Science (CS) learning in informal learning environments and literature on the factors that influence girls to enter CS. In this article, we outline design choices around the creation of a summer programming camp for middle school youth. In addition, we describe a near-peer mentoring model we used that was influenced by Bandura's self-efficacy theory. The purpose of this article, apart from promoting transparency of program design, was to evaluate the effectiveness of our camp design in terms of increasing youths’ interest, self-efficacy beliefs, and perceptions of parental support. We found significant gains for all three of these concepts. Additionally, we make connections between our design choices (e.g., videos, peer support, mentor support) and the affective gains by thematically analyzing interview data concerning the outcomes found in our camps. 
    more » « less
  2. Women and racially and ethnically minoritized populations are underrepresented in science, technology, engineering, and mathematics (STEM). Out-of-school time programs like summer camps can provide positive science experiences that may increase self-efficacy and awareness of STEM opportunities. Such programs often use the same high-impact practices used in K–12 classrooms including relating concepts to real-world examples, engaging students as active participants in inquiry-driven projects, and facilitating learning in a cooperative context. They additionally provide opportunities for engaging in STEM without fear of failure, offer a community of mentors, and allow families to become more involved. We designed a summer camp for middle schoolers who identified as girls, low-income, and as a minoritized race or ethnicity. We describe the design of the camp as well as the results from a simple pre- and post-camp questionnaire that examined each camper’s relationship to science, scientific self-efficacy, and interest in having a job in STEM. We found an increase in self-efficacy in camp participants, which is important because high scientific self-efficacy predicts student performance and persistence in STEM, especially for girls. We did not detect an increase in interest in pursuing a STEM job, likely because of already high values for this question on the pre-camp survey. We add to the growing body of work recognizing the potential of out-of-school time STEM programs to increase scientific self-efficacy for girls and racially minoritized students. Tweet: Summer camp for minoritized middle-school girls increases scientific self-efficacy, a characteristic that may be important for removing barriers to participation in STEM. 
    more » « less
  3. Students from underrepresented populations—females, working class, and youth from marginalized racial/ethnic groups—are less likely than their middle-class Asian and White male peers to study computer science (CS) in college. The dearth of CS undergraduates from these groups contributes to projected labor force shortages. Sources of the dilemma include weak or absent inspiration and CS preparation in middle schools and negative stereotypes suggesting certain groups do not belong in CS. This case study describes three years of a community collaboration between a local university and a nearby middle school attended by primarily low-income students of color. The University of North Carolina Charlotte/Wilson STEM Academy Partnership focused on undergraduates majoring in CS teaching monthly workshops designed to inspire and academically prepare the middle schoolers for college and CS majors by teaching them coding and computational thinking while also challenging stereotypes about who belongs in CS. Post-workshop assessments, reflective essays, interviews, and administrative data were thematically coded. Findings suggest the workshops sparked interest in college and CS, undermined toxic stereotypes, and nurtured the academic self-confidence of middle schoolers. The Partnership provided the undergraduates with opportunities to meet their own academic goals while “paying it forward.” Results suggest that the Partnership can serve as a model starting point for disrupting the disproportionalities in female and underrepresented minority students in CS. 
    more » « less
  4. Program leaders put a tremendous amount of thought into how they recruit students for engineering summer camps. Recruitment methods can include information sessions, established partnerships with school districts, and teacher or school counselor nominations of students. This study seeks to assess if the methods used to recruit students broaden participation or have any impact on students’ perceptions of engineering. Two identical week-long summer camps were hosted by the University of Texas at Austin (UT Austin) in the summer of 2022. Camps were entirely free for all campers. A specific goal of the camp was to promote engineering as a career pathway for students from groups that have been historically excluded from STEM majors. Campers were rising 8th and 9th grade students in two cities near UT Austin; this age was intentionally identified as students who have sufficient STEM backgrounds to engage in meaningful engineering design challenges, and who are also at a critical inflection point with respect to decisions that put them on a trajectory to study engineering in college. Summer camp topics ranged from additive manufacturing to the chemical properties of water proofing, and students did activities such as constructing a prosthetic limb from recovered materials or designing an electronic dance game pad. In one camp session, students primarily found out about the camp by being nominated by counselors at their schools, with an intentional focus on recruiting students who might not otherwise be exposed to engineering. In the other camp session, parents signed up campers after hearing about the camp via information sent through the schools. All students who applied were accepted to the camps. Identical pre- and post-camp surveys asked campers questions about their knowledge of what engineers do, their interest in math and science, and what factors are important to them when choosing a career. Survey analysis showed that there were statistically significant differences in answers to questions between the groups in the pre-camp surveys, but post-camp surveys show that these differences disappeared after participating in the summer camp. Students whose parents directly enrolled them in the camp had higher pre-camp interest in science and technology; thus, counselor nominations may be a method to recruit students who might not have been interested in engineering had they not attended the camp. Additionally, prior to participating, campers recruited via counselor nominations had a narrower view of what engineers do than the parent-enrolled campers, but after camp the two groups had similar perceptions of what engineers do. The results of this study confirm literature findings regarding the importance of exposing young learners to engineering as a profession and broaden their views of opportunities in this field. The recruitment methods used for these camps show that nomination-based recruitment methods have the potential for greater impact on changing students’ engineering trajectories. 
    more » « less
  5. null (Ed.)
    In response to the need to broaden participation in computer science, we designed a summer camp to teach middle-school-aged youth to code apps with MIT App Inventor. For the past four summers, we have observed significant gains in youth's interest and self-efficacy in computer science, after attending our camps. The majority of these youth, however, were youth from our local community. To provide equal access across the state and secure more diversity, we were interested in examining the effect of the camp on a broader population of youth. Thus, we partnered with an outreach program to reach and test our camps on youth from low-income high-poverty areas in the Intermountain West. During the summer of 2019, we conducted two sets of camps: locally advertised app camps that attracted youth from our local community and a second set of camps as part of a larger outreach program for youth from low-income high-poverty areas. The camps for both populations followed the same design of personnel, camp activities, structure, and curriculum. However, the background of the participants was slightly different. Using survey data, we found that the local sample experienced significant gains in both self-efficacy and interest, while the outreach group only reported significant gains in self-efficacy after attending the camp. However, the qualitative data collected from the outreach participants indicated that they had a positive experience both with the camp and their mentors. In this article, we discuss the camp design and findings in relation to strategies for broadening participation in Computer Science education. 
    more » « less