skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biogeochemical responses over 37 years to manipulation of phosphorus concentrations in an Arctic river: The Upper Kuparuk River Experiment
Abstract The climate of the Arctic region is changing rapidly, with important implications for permafrost, vegetation communities, and transport of solutes by streams and rivers to the Arctic Ocean. While research on Arctic streams and rivers has accelerated in recent years, long‐term records are relatively rare compared to temperate and tropical regions. We began monitoring the upper Kuparuk River in 1983 as part of a long‐term, low‐level, whole‐season phosphorus enrichment of a 4–6 km experimental reach, which was subsequently incorporated into the Arctic Long‐Term Ecological Research (Arctic LTER) programme. The phosphorus enrichment phase of the Upper Kuparuk River Experiment (UKRE) ran continuously for 34 seasons, fundamentally altering the community structure and function of the Fertilized reach. The objectives of this paper are to (a) update observations of the environmental conditions in the Kuparuk River region as revealed by long‐term, catchment‐level monitoring, (b) compare long‐term trends in biogeochemical characteristics of phosphorus‐enriched and reference reaches of the Kuparuk River, and (c) report results from a new ‘ReFertilization’ experiment. During the UKRE, temperature and discharge did not change significantly, though precipitation increased slightly. However, the UKRE revealed unexpected community state changes attributable to phosphorus enrichment (e.g., appearance of colonizing bryophytes) and long‐term legacy effects of these state changes after cessation of the phosphorus enrichment. The UKRE also revealed important biogeochemical trends (e.g., increased nitrate flux and benthic C:N, decreased DOP flux). The decrease in DOP is particularly notable in that this may be a pan‐Arctic trend related to permafrost thaw and exposure to new sources of iron that reduce phosphorus mobility to streams and rivers. The trends revealed by the UKRE would have been difficult or impossible to identify without long‐term, catchment level research and may have important influences on connections between Arctic headwater catchments and downstream receiving waters, including the Arctic Ocean.  more » « less
Award ID(s):
1637459
PAR ID:
10385577
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
35
Issue:
3
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains species abundance data of epilithic diatoms collected from the Upper Kuparuk River, Alaska (USA), spanning from 1997 to 2022. The dataset is part of a long-term study aimed at understanding the ecological impacts of phosphorus enrichment in Arctic freshwater ecosystems. Samples were collected annually from both phosphorus-fertilized and reference reaches of the river to assess the influence of nutrient enrichment on diatom community composition. The dataset includes detailed records of diatom species identified and their relative abundances in the phosphorus reach only. Analyses of this dataset using permutational multivariate analysis of variance (PERMANOVA) and Redundancy Analysis (RDA) revealed significant shifts in diatom communities attributable to phosphorus enrichment. Indicator Species Analysis identified key diatom species that are reliable indicators of phosphorus-enriched conditions. This dataset provides valuable insights into the long-term responses of diatom communities to nutrient enrichment and the ecological interactions with mosses that colonized the fertilized reach. It serves as an important resource for researchers studying nutrient dynamics, ecological monitoring, and the impacts of climate change on Arctic freshwater systems. 
    more » « less
  2. Climate warming in the Arctic is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology and increases weathering rates, which can increase the delivery of solutes to adjacent waters. Long-term river monitoring of the Kuparuk River (North Slope, Alaska, USA) confirms significant increases in solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in total phosphorus (TP) or soluble reactive phosphorus (SRP), the nutrient that limits primary production in this and similar rivers in the region. Here, we show that Mehlich-3 extractable iron (Fe) and aluminum (Al) impart high P biogeochemical sorption capacities across a range of landscape features that we would expect to promote lateral movement of water and solutes to headwater streams in our study watershed. Reanalysis of a recently published pan-Arctic soils database suggests that this high P sorption capacity could be common in other parts of the Arctic region. We conclude that while warming-induced permafrost thaw may increase the potential for P mobility in our watershed, simultaneous increases in pedogenic secondary Fe and Al minerals may continue to retain P in these soils and limit biological productivity in the adjacent river. We suggest that similar interactions may occur in other areas of the Arctic where comparable biogeochemical conditions prevail. 
    more » « less
  3. Climate warming in the Arctic region is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology, increases weathering rates, and thus increases the delivery of solutes to adjacent waters. Long-term monitoring of the Kuparuk River (North Slope, Alaska) confirms significant increases in many solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in phosphorus (P), the nutrient that most often limits primary production in tundra streams. Here, we show that soils in the upper Kuparuk River watershed have a high biogeochemical sorption capacity that can limit P mobility and use published data to show that this may be a pan-Arctic characteristic. While P bioavailability is restricted by vegetative cycling, we found that concentrations of Mehlich-3 extractable iron (Fe) and aluminum (Al) also impart a very high P geochemical sorption capacity across our study sites. Analysis of a pan-Arctic soils database suggests that this high P sorption capacity could be a ubiquitous feature of Arctic soils. Therefore, we conclude that while warming-induced permafrost thaw may increase P mobility, simultaneous increases in pedogenic secondary Fe/Al minerals will continue to retain P in tundra soils and limit biological productivity in adjacent aquatic systems. 
    more » « less
  4. This dataset contains species abundance data of epilithic diatoms collected from the Upper Kuparuk River, Alaska (USA), spanning from 1997 to 2022. The dataset is part of a long-term study aimed at understanding the ecological impacts of phosphorus enrichment in Arctic freshwater ecosystems. Samples were collected annually from the river to examine if physical, chemical, biological, weather, and climate variables influence diatom community composition over time. The dataset includes detailed records of diatom species identified and their relative abundances ins the reference reach only. Analyses of this dataset using permutational multivariate analysis of variance (PERMANOVA), canonical correspondence analysis (CCA), and partial canonical correspondence analysis (pCCA) . Analyses reveal significant shifts in diatom community composition over time, closely linked to changes in alkalinity, nitrate + nitrite, total dissolved phosphorus, dissolved organic carbon, and wind speed. We identify specific diatom taxa as bioindicators, highlighting their sensitivity to shifts in alkalinity, nitrate + nitrite, and wind speed. This dataset provides valuable insights on how climate change is reshaping the structure and function of Arctic rivers, underscoring the importance of diatoms as bioindicators in Arctic ecosystems. It serves as an important resource for researchers studying nutrient dynamics, ecological monitoring, and the impacts of climate change on Arctic freshwater systems. 
    more » « less
  5. <italic>Abstract</italic> Climate change is expected to alter disturbance regimes and biogeochemical cycles that underlie the structure and function of ecosystems worldwide. In the Arctic, rapid warming is already affecting these processes via changes in precipitation and thawing permafrost. We assessed how anticipated changes in disturbance regimes and nutrient availability may affect an arctic river ecosystem (Kuparuk River, Alaska) by analyzing temporal patterns of biofilm chlorophyll mass and macroinvertebrate community structure and productivity. Our study incorporated an upstream reach (sampled 2001–2012) and a downstream reach (sampled 2011–2012) to which phosphorus (P) was added to simulate increases in nutrient supply that are anticipated as permafrost thaws. Greater hydrologic disturbance during the open‐water season correlated with reduced algal biomass and invertebrate secondary production (range ∼ 2–7 g DM m−2yr−1) in the following spring and summer. Bed disturbing flows also altered macroinvertebrate community structure with distinct “high‐flow” and “base‐flow” assemblages documented. Recovery time was shorter for chlorophyll mass and macroinvertebrate production (∼ 1 yr) than community structure (∼ 3 yr). Experimental P‐addition increased algal biomass and invertebrate production, but also resulted in a third macroinvertebrate assemblage dominated by mobile grazers rather than filter‐feeders. Our results suggest that a decrease in the return interval for bed disturbing floods to < 4 yr will result in persistent changes in macroinvertebrate community structure and fundamental alterations to the food web. These results also demonstrate how arctic river communities may be affected by increases in the magnitude and variability of river discharge and nutrient supplies that are anticipated as the climate warms. 
    more » « less