Climate warming in the Arctic is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology and increases weathering rates, which can increase the delivery of solutes to adjacent waters. Long-term river monitoring of the Kuparuk River (North Slope, Alaska, USA) confirms significant increases in solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in total phosphorus (TP) or soluble reactive phosphorus (SRP), the nutrient that limits primary production in this and similar rivers in the region. Here, we show that Mehlich-3 extractable iron (Fe) and aluminum (Al) impart high P biogeochemical sorption capacities across a range of landscape features that we would expect to promote lateral movement of water and solutes to headwater streams in our study watershed. Reanalysis of a recently published pan-Arctic soils database suggests that this high P sorption capacity could be common in other parts of the Arctic region. We conclude that while warming-induced permafrost thaw may increase the potential for P mobility in our watershed, simultaneous increases in pedogenic secondary Fe and Al minerals may continue to retain P in these soils and limit biological productivity in the adjacent river. We suggest that similar interactions may occur in other areas of the Arctic where comparable biogeochemical conditions prevail.
more »
« less
Geochemical phosphorus sequestration in tundra soils limits primary production in Arctic headwater streams and rivers. Upper Kuparuk River, North Slope, Alaska, 2020-2023.
Climate warming in the Arctic region is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology, increases weathering rates, and thus increases the delivery of solutes to adjacent waters. Long-term monitoring of the Kuparuk River (North Slope, Alaska) confirms significant increases in many solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in phosphorus (P), the nutrient that most often limits primary production in tundra streams. Here, we show that soils in the upper Kuparuk River watershed have a high biogeochemical sorption capacity that can limit P mobility and use published data to show that this may be a pan-Arctic characteristic. While P bioavailability is restricted by vegetative cycling, we found that concentrations of Mehlich-3 extractable iron (Fe) and aluminum (Al) also impart a very high P geochemical sorption capacity across our study sites. Analysis of a pan-Arctic soils database suggests that this high P sorption capacity could be a ubiquitous feature of Arctic soils. Therefore, we conclude that while warming-induced permafrost thaw may increase P mobility, simultaneous increases in pedogenic secondary Fe/Al minerals will continue to retain P in tundra soils and limit biological productivity in adjacent aquatic systems.
more »
« less
- Award ID(s):
- 2220863
- PAR ID:
- 10573994
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Arctic Iron Phosphorus Sorption Biogeochemistry Kuparuk River
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microorganisms drive many aspects of organic carbon cycling in thawing permafrost soils, but the compositional trajectory of the post-thaw microbiome and its metabolic activity remain uncertain, which limits our ability to predict permafrost–climate feedbacks in a warming world. Using quantitative metabarcoding and metagenomic sequencing, we determined relative and absolute changes in microbiome composition and functional gene abundance during thaw incubations of wet sedge tundra collected from northern Alaska, USA. Organic soils from the tundra active-layer (0–50 cm), transition-zone (50–70 cm), and permafrost (70+ cm) depths were incubated under reducing conditions at 4 °C for 30 days to mimic an extended thaw duration. Following extended thaw, we found that iron (Fe)-cycling Gammaproteobacteria, specifically the heterotrophic Fe(III)-reducing Rhodoferax sp. and chemoautotrophic Fe(II)-oxidizing Gallionella sp., increased by 3–5 orders of magnitude in absolute abundance within the transition-zone and permafrost microbiomes, accounting for 65% of community abundance. We also found that the abundance of genes for Fe(III) reduction (e.g., MtrE) and Fe(II) oxidation (e.g., Cyc1) increased concurrently with genes for benzoate degradation and pyruvate metabolism, in which pyruvate is used to generate acetate that can be oxidized, along with benzoate, to CO2 when coupled with Fe(III) reduction. Gene abundance for CH4 metabolism decreased following extended thaw, suggesting dissimilatory Fe(III) reduction suppresses acetoclastic methanogenesis under reducing conditions. Our genomic evidence indicates that microbial carbon degradation is dominated by iron redox metabolism via an increase in gene abundance associated with Fe(III) reduction and Fe(II) oxidation during initial permafrost thaw, likely increasing microbial respiration while suppressing methanogenesis in wet sedge tundra.more » « less
-
Summary As Arctic soils warm, thawed permafrost releases nitrogen (N) that could stimulate plant productivity and thus offset soil carbon losses from tundra ecosystems. Although mycorrhizal fungi could facilitate plant access to permafrost‐derived N, their exploration capacity beyond host plant root systems into deep, cold active layer soils adjacent to the permafrost table is unknown.We characterized root‐associated fungi (RAF) that colonized ericoid (ERM) and ectomycorrhizal (ECM) shrub roots and occurred below the maximum rooting depth in permafrost thaw‐front soil in tussock and shrub tundra communities. We explored the relationships between root and thaw front fungal composition and plant uptake of a15N tracer applied at the permafrost boundary.We show that ERM and ECM shrubs associate with RAF at the thaw front providing evidence for potential mycelial connectivity between roots and the permafrost boundary. Among shrubs and tundra communities, RAF connectivity to the thaw boundary was ubiquitous. The occurrence of particular RAF in both roots and thaw front soil was positively correlated with15N recovered in shrub biomassTaxon‐specific RAF associations could be a mechanism for the vertical redistribution of deep, permafrost‐derived nutrients, which may alleviate N limitation and stimulate productivity in warming tundra.more » « less
-
Abstract The climate of the Arctic region is changing rapidly, with important implications for permafrost, vegetation communities, and transport of solutes by streams and rivers to the Arctic Ocean. While research on Arctic streams and rivers has accelerated in recent years, long‐term records are relatively rare compared to temperate and tropical regions. We began monitoring the upper Kuparuk River in 1983 as part of a long‐term, low‐level, whole‐season phosphorus enrichment of a 4–6 km experimental reach, which was subsequently incorporated into the Arctic Long‐Term Ecological Research (Arctic LTER) programme. The phosphorus enrichment phase of the Upper Kuparuk River Experiment (UKRE) ran continuously for 34 seasons, fundamentally altering the community structure and function of the Fertilized reach. The objectives of this paper are to (a) update observations of the environmental conditions in the Kuparuk River region as revealed by long‐term, catchment‐level monitoring, (b) compare long‐term trends in biogeochemical characteristics of phosphorus‐enriched and reference reaches of the Kuparuk River, and (c) report results from a new ‘ReFertilization’ experiment. During the UKRE, temperature and discharge did not change significantly, though precipitation increased slightly. However, the UKRE revealed unexpected community state changes attributable to phosphorus enrichment (e.g., appearance of colonizing bryophytes) and long‐term legacy effects of these state changes after cessation of the phosphorus enrichment. The UKRE also revealed important biogeochemical trends (e.g., increased nitrate flux and benthic C:N, decreased DOP flux). The decrease in DOP is particularly notable in that this may be a pan‐Arctic trend related to permafrost thaw and exposure to new sources of iron that reduce phosphorus mobility to streams and rivers. The trends revealed by the UKRE would have been difficult or impossible to identify without long‐term, catchment level research and may have important influences on connections between Arctic headwater catchments and downstream receiving waters, including the Arctic Ocean.more » « less
-
Tundra vegetation productivity and composition are responding rapidly to climatic changes in the Arctic. These changes can, in turn, mitigate or amplify permafrost thaw. In this Review, we synthesize remotely sensed and field-observed vegetation change across the tundra biome, and outline how these shifts could influence permafrost thaw. Permafrost ice content appears to be an important control on local vegetation changes; woody vegetation generally increases in ice-poor uplands, whereas replacement of woody vegetation by (aquatic) graminoids following abrupt permafrost thaw is more frequent in ice-rich Arctic lowlands. These locally observed vegetation changes contribute to regional satellite-observed greening trends, although the interpretation of greening and browning is complicated. Increases in vegetation cover and height generally mitigate permafrost thaw in summer, yet, increase annual soil temperatures through snow-related winter soil warming effects. Strong vegetation–soil feedbacks currently alleviate the consequences of thaw-related disturbances. However, if the increasing scale and frequency of disturbances in a warming Arctic exceeds the capacity for vegetation and permafrost recovery, changes to Arctic ecosystems could be irreversible. To better disentangle vegetation– soil– permafrost interactions, ecological field studies remain crucial, but require better integration with geophysical assessments.more » « less