skip to main content


Title: LYRA. III. The Smallest Reionization Survivors
Abstract

The dividing line between galaxies that are quenched by reionization (“relics”) and galaxies that survive reionization (i.e., continue forming stars) is commonly discussed in terms of a halo mass threshold. We probe this threshold in a physically more complete and accurate way than has been possible to date, using five extremely high resolution (Mtarget= 4M) cosmological zoom-in simulations of dwarf galaxies within the halo mass range (1–4) × 109M. The employed LYRA simulation model features resolved interstellar medium physics and individual, resolved supernova explosions. Interestingly, two out of five of the simulated dwarf galaxies lie close to the threshold mass but are neither full reionization relics nor full reionization survivors. These galaxies initially quench at the time of reionization but merely remain quiescent for ∼500 Myr. Atz∼ 5 they recommence star formation in a synchronous way and remain star-forming until the present day. The parallel timing indicates consistent sound-crossing and cooling times between the halos. While the star formation histories we find are diverse, we show that they are directly related to the ability of a given halo to retain and cool gas. Whereas the latter is most strongly dependent on the mass (or virial temperature) of the host halo at the time of reionization, it also depends on its growth history, the UV background (and its decrease at late times), and the amount of metals retained within the halo.

 
more » « less
Award ID(s):
2108470
NSF-PAR ID:
10385665
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 120
Size(s):
["Article No. 120"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satelliteM*≈ 108M. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing.

     
    more » « less
  2. ABSTRACT

    We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$), run to z = 0 with $30\, \mathrm{M}_{\odot }$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core ${\gt}200\rm \, pc$, while lower mass UFDs exhibit cusps down to ${\lesssim}100\rm \, pc$, as expected from energetic arguments. Our dwarfs with $M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).

     
    more » « less
  3. Abstract

    We present Symphony, a compilation of 262 cosmological, cold-dark-matter-only zoom-in simulations spanning four decades of host halo mass, from 1011–1015M. This compilation includes three existing simulation suites at the cluster and Milky Way–mass scales, and two new suites: 39 Large Magellanic Cloud-mass (1011M) and 49 strong-lens-analog (1013M) group-mass hosts. Across the entire host halo mass range, the highest-resolution regions in these simulations are resolved with a dark matter particle mass of ≈3 × 10−7times the host virial mass and a Plummer-equivalent gravitational softening length of ≈9 × 10−4times the host virial radius, on average. We measure correlations between subhalo abundance and host concentration, formation time, and maximum subhalo mass, all of which peak at the Milky Way host halo mass scale. Subhalo abundances are ≈50% higher in clusters than in lower-mass hosts at fixed sub-to-host halo mass ratios. Subhalo radial distributions are approximately self-similar as a function of host mass and are less concentrated than hosts’ underlying dark matter distributions. We compare our results to the semianalytic modelGalacticus, which predicts subhalo mass functions with a higher normalization at the low-mass end and radial distributions that are slightly more concentrated than Symphony. We useUniverseMachineto model halo and subhalo star formation histories in Symphony, and we demonstrate that these predictions resolve the formation histories of the halos that host nearly all currently observable satellite galaxies in the universe. To promote open use of Symphony, data products are publicly available athttp://web.stanford.edu/group/gfc/symphony.

     
    more » « less
  4. Abstract

    Using spatially resolved Hαemission line maps of star-forming galaxies, we study the spatial distribution of star formation over a wide range in redshift (0.5 ≲z≲ 1.7). Ourz∼ 0.5 measurements come from deep Hubble Space Telescope (HST) Wide Field Camera 3 G102 grism spectroscopy obtained as part of the CANDELS LyαEmission at Reionization Experiment. For star-forming galaxies with log(M*/M) ≥ 8.96, the mean Hαeffective radius is 1.2 ± 0.1 times larger than that of the stellar continuum, implying inside-out growth via star formation. This measurement agrees within 1σwith those measured atz∼ 1 andz∼ 1.7 from the 3D-HST and KMOS3Dsurveys, respectively, implying no redshift evolution. However, we observe redshift evolution in the stellar mass surface density within 1 kpc (Σ1kpc). Star-forming galaxies atz∼ 0.5 with a stellar mass of log(M*/M) = 9.5 have a ratio of Σ1kpcin Hαrelative to their stellar continuum that is lower by (19 ± 2)% compared toz∼ 1 galaxies. Σ1kpc,Hα1kpc,Contdecreases toward higher stellar masses. The majority of the redshift evolution in Σ1kpc,Hα1kpc,Contversus stellar mass stems from the fact that log(Σ1kpc,Hα) declines twice as much as log(Σ1kpc,Cont) fromz∼ 1 to 0.5 (at a fixed stellar mass of log(M*/M) = 9.5). By comparing our results to the TNG50 cosmological magneto-hydrodynamical simulation, we rule out dust as the driver of this evolution. Our results are consistent with inside-out quenching following in the wake of inside-out growth, the former of which drives the significant drop in Σ1kpc,Hαfromz∼ 1 toz∼ 0.5.

     
    more » « less
  5. Abstract

    Existing star-forming vs. active galactic nucleus (AGN) classification schemes using optical emission-line diagnostics mostly fail for low-metallicity and/or highly star-forming galaxies, missing AGN in typicalz∼ 0 dwarfs. To recover AGN in dwarfs with strong emission lines (SELs), we present a classification scheme optimizing the use of existing optical diagnostics. We use Sloan Digital Sky Survey emission-line catalogs overlapping the volume- and mass-limited REsolved Spectroscopy Of a Local VolumE (RESOLVE) and Environmental COntex (ECO) surveys to determine the AGN percentage in SEL dwarfs. Our photoionization grids show that the [Oiii]/Hβversus [Sii]/Hαdiagram (Siiplot) and [Oiii]/Hβversus [Oi]/Hαdiagram (Oiplot) are less metallicity sensitive and more successful in identifying dwarf AGN than the popular [Oiii]/Hβversus [Nii]/Hαdiagnostic (Niiplot or “BPT diagram”). We identify a new category of “star-forming AGN” (SF-AGN) classified as star-forming by the Niiplot but as AGN by the Siiand/or Oiplots. Including SF-AGN, we find thez∼ 0 AGN percentage in dwarfs with SELs to be ∼3%–16%, far exceeding most previous optical estimates (∼1%). The large range in our dwarf AGN percentage reflects differences in spectral fitting methodologies between catalogs. The highly complete nature of RESOLVE and ECO allows us to normalize strong emission-line galaxy statistics to the full galaxy population, reducing the dwarf AGN percentage to ∼0.6%–3.0%. The newly identified SF-AGN are mostly gas-rich dwarfs with halo mass <1011.5M, where highly efficient cosmic gas accretion is expected. Almost all SF-AGN also have low metallicities (Z≲ 0.4Z), demonstrating the advantage of our method.

     
    more » « less