skip to main content

Title: ELVES. III. Environmental Quenching by Milky Way–mass Hosts

Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satelliteM*≈ 108M. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching more » times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing.

« less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 94
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this

    The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($M_{*}\lesssim 10^7\, \rm {M}_{\odot }$) are mostly quiescent and higher mass satellites ($M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$) are mostly star forming, with intermediate-mass satellites ($M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group ormore »a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$, they do not generally reproduce SAGA’s turnover at lower masses.

    « less
  2. ABSTRACT We present the first satellite system of the Large Binocular Telescope Satellites Of Nearby Galaxies Survey (LBT-SONG), a survey to characterize the close satellite populations of Large Magellanic Cloud to Milky-Way-mass, star-forming galaxies in the Local Volume. In this paper, we describe our unresolved diffuse satellite finding and completeness measurement methodology and apply this framework to NGC 628, an isolated galaxy with ∼1/4 the stellar mass of the Milky Way. We present two new dwarf satellite galaxy candidates: NGC 628 dwA, and dwB with MV = −12.2 and −7.7, respectively. NGC 628 dwA is a classical dwarf while NGC 628 dwB is a low-luminosity galaxy that appears to have been quenched after reionization. Completeness corrections indicate that the presence of these two satellites is consistent with CDM predictions. The satellite colours indicate that the galaxies are neither actively star forming nor do they have the purely ancient stellar populations characteristic of ultrafaint dwarfs. Instead, and consistent with our previous work on the NGC 4214 system, they show signs of recent quenching, further indicating that environmental quenching can play a role in modifying satellite populations even for hosts smaller than the Milky Way.
  3. Abstract Using Hubble Space Telescope imaging of the resolved stellar population of KK 242 = NGC 6503-d1 =PGC 4689184, we measure the distance to the galaxy to be 6.46 ± 0.32 Mpc and find that KK 242 is a satellite of the low-mass spiral galaxy NGC 6503 located on the edge of the Local Void. Observations with the Karl G. Jansky Very Large Array show signs of a very faint H i signal at the position of KK 242 within a velocity range of V hel = −80 ± 10 km s −1 . This velocity range is severely contaminated by H i emission from the Milky Way and from NGC 6503. The dwarf galaxy is classified as the transition type, dIrr/dSph, with a total H i mass of < 10 6 M ⊙ and a star formation rate SFR(H α ) = −4.82 dex ( M ⊙ yr −1 ). Being at a projected separation of 31 kpc with a radial velocity difference of—105 km s −1 relative to NGC 6503, KK 242 gives an estimate of the halo mass of the spiral galaxy to be log ( M / M ⊙ ) = 11.6. Besides NGC 6503, theremore »are eight more detached low-luminosity spiral galaxies in the Local Volume: M33, NGC 2403, NGC 7793, NGC 1313, NGC 4236, NGC 5068, NGC 4656, and NGC 7640, from whose small satellites we have estimated the average total mass of the host galaxies and their average total mass-to- K -band-luminosity 〈 M T / M ⊙ 〉 = (3.46 ± 0.84) × 10 11 and (58 ± 19) M ⊙ / L ⊙ , respectively.« less
  4. Abstract

    Large diffuse galaxies are hard to find, but understanding the environments where they live, their numbers, and ultimately their origins, is of intense interest and importance for galaxy formation and evolution. Using Subaru’s Hyper Suprime-Cam Strategic Survey Program, we perform a systematic search for low surface brightness galaxies and present novel and effective methods for detecting and modeling them. As a case study, we surveyed 922 Milky Way analogs in the nearby Universe (0.01 <z< 0.04) and built a large sample of satellite galaxies that are outliers in the mass–size relation. These “ultra-puffy” galaxies (UPGs), defined to be 1.5σabove the average mass–size relation, represent the tail of the satellite size distribution. We find that each MW analog hostsNUPG= 0.31 ± 0.05 UPGs on average, which is consistent with but slightly lower than the observed abundance at this halo mass in the Local Volume. We also construct a sample of ultra-diffuse galaxies (UDGs) in MW analogs and find an abundance ofNUDG= 0.44 ± 0.05 per host. With literature results, we confirm that the UDG abundance scales with the host halo mass following a sublinear power law. We argue that our definition of UPGs, which is based on the mass–size relation,more »is more physically motivated than the common definition of UDGs, which depends on the surface brightness and size cuts and thus yields different surface mass density cuts for quenched and star-forming galaxies.

    « less
  5. ABSTRACT The satellite populations of the Milky Way, and Milky Way mass galaxies in the local Universe, have been extensively studied to constrain dark matter and galaxy evolution physics. Recently, there has been a shift to studying satellites of hosts with stellar masses between that of the Large Magellanic Cloud and the Milky Way, since they can provide further insight on hierarchical structure formation, environmental effects on satellites, and the nature of dark matter. Most work is focused on the Local Volume, and little is still known about low-mass host galaxies at higher redshift. To improve our understanding of the evolution of satellite populations of low-mass hosts, we study satellite galaxy populations as a function of host stellar mass 9.5 < log (M*/M⊙) < 10.5 and redshifts 0.1 < $z$ < 0.8 in the COSMOS survey, making this the first study of satellite systems of low-mass hosts across half the age of the universe. We find that the satellite populations of low-mass host galaxies, which we measure down to satellite masses equivalent to the Fornax dwarf spheroidal satellite of the Milky Way, remain mostly unchanged through time. We observe a weak dependence between host stellar mass and number of satellites permore »host, which suggests that the stellar masses of the hosts are in the power-law regime of the stellar mass to halo mass relation (M*–Mhalo) for low-mass galaxies. Finally, we test the constraining power of our measured cumulative luminosity function to calculate the low-mass end slope of the M*–Mhalo relation. These new satellite luminosity function measurements are consistent with Lamda cold dark matter predictions.« less