skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Impact of Winds on AMOC in a Fully‐Coupled Climate Model
Abstract Here we investigate the role of the atmospheric circulation in the Atlantic Meridional Overturning Circulation (AMOC) by comparing a fully‐coupled large ensemble, a forced‐ocean simulation, and new experiments using a fully‐coupled global climate model where winds above the boundary layer are nudged toward reanalysis. When winds are nudged north of 45°N, agreement with RAPID array observations of AMOC at 26.5°N improves across several metrics. The phasing of interannual variability is well‐captured due to the response of the local Ekman component in both wind‐nudging and forced‐ocean simulations, however the variance remains underestimated. The mean AMOC strength is substantially reduced relative to the fully‐coupled model large ensemble, which is biased high, due to the impact of winds on surface buoyancy fluxes over the subpolar gyre. Nudging winds toward observations also reduces the 1979–2016 trend in AMOC, suggesting that improvement in the representation of the high‐latitude atmosphere is important for projecting long‐term AMOC changes.  more » « less
Award ID(s):
2213988 1850900
PAR ID:
10385678
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
24
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe a form of Atlantic Meridional Overturning Circulation (AMOC) variability that we believe has not previously appeared in observations or models. It is found in an ensemble of eddy‐resolving North Atlantic simulations that the AMOC frequently reverses in sign at ∼35°N with gyre‐wide anomalies in size and that reach throughout the water column. The duration of each reversal is roughly 1 month. The reversals are part of the annual AMOC cycle occurring in boreal winter, although not all years feature an actual reversal in sign. The occurrence of the reversals appears in our ensemble mean, suggesting it is a forced feature of the circulation. A partial explanation is found in an Ekman response to wind stress anomalies. Model ensemble simulations run with different combinations of climatological and realistic forcings argue that it is the atmospheric forcing specifically that results in the reversals, despite the signals extending into the deep ocean. 
    more » « less
  2. Abstract The impact on seasonal polar predictability from improved tropical and midlatitude forecasts is explored using a perfect-model experiment and applying a nudging approach in a GCM. We run three sets of 7-month long forecasts: a standard free-running forecast and two nudged forecasts in which atmospheric winds, temperature, and specific humidity (U, V, T, Q) are nudged toward one of the forecast runs from the free ensemble. The two nudged forecasts apply the nudging over different domains: the tropics (30°S–30°N) and the tropics and midlatitudes (55°S–55°N). We find that the tropics have modest impact on forecast skill in the Arctic or Antarctica both for sea ice and the atmosphere that is mainly confined to the North Pacific and Bellingshausen–Amundsen–Ross Seas, whereas the midlatitudes greatly improve Arctic winter and Antarctic year-round forecast skill. Arctic summer forecast skill from May initialization is not strongly improved in the nudged forecasts relative to the free forecast and is thus mostly a “local” problem. In the atmosphere, forecast skill improvement from midlatitude nudging tends to be largest in the polar stratospheres and decreases toward the surface. 
    more » « less
  3. The fundamental mechanisms that explain high subpolar North Atlantic (SPNA) decadal predictability within a particular modeling framework are described. The focus is on the Community Earth System Model (CESM), run in both a historical forced-ocean configuration as well as in a fully coupled configuration initialized from the former. The initialized prediction experiments comprise the CESM Decadal Prediction Large Ensemble (CESM-DPLE)—a 40-member set of retrospective hindcasts documented in Yeager et al. (Bull Am Meteorol Soc 99:1867–1886. https://doi.org/10.1175/bams-d-17-0098.1, 2018). Heat budget analysis confirms the driving role of advective heat convergence in skillful prediction of SPNA upper ocean heat content out to decadal lead times. The key ocean dynamics are topographically-coupled overturning/gyre fluctuations that are geographically centered over the mid-Atlantic ridge (MAR). Long-lasting predictive skill for ocean heat transport can be related to predictable barotropic gyre and sigma-coordinate AMOC circulations, but depth-coordinate AMOC is far less predictable except in the deepest layers. The foundation of ocean memory (and circulation predictive skill) in CESM-DPLE is Labrador Sea Water thickness, which propagates predictably through interior pathways towards the MAR where large anomalies accumulate and persist. Abyssal thickness anomalies drive predictable decadal changes in the gyre circulation, including changes in sea level gradient and near surface flow, that account for the high predictability of SPNA upper ocean heat content. 
    more » « less
  4. Abstract Over the past decades, Arctic climate has exhibited significant changes characterized by strong Pan-Arctic warming and a large scale wind shift trending toward an anticyclonic anomaly centered over Greenland and the Arctic ocean. Recent work has suggested that this wind change is able to warm the Arctic atmosphere and melt sea ice through dynamical-driven warming, moistening and ice drift effects. However, previous examination of this linkage lacks a capability to fully consider the complex nature of the sea ice response to the wind change. In this study, we perform a more rigorous test of this idea by using a coupled high-resolution modelling framework with observed winds nudged over the Arctic that allows for a comparison of these wind-induced effects with observations and simulated effects forced by anthropogenic forcing. Our nudging simulation can well capture observed variability of atmospheric temperature, sea ice and the radiation balance during the Arctic summer and appears to simulate around 30% of Arctic warming and sea ice melting over the whole period (1979-2020) and more than 50% over the period 2000 to 2012, which is the fastest Arctic warming decade in the satellite era. In particular, in the summer of 2020, a similar wind pattern reemerged to induce the second-lowest sea ice extent since 1979, suggesting that large scale wind changes in the Arctic is essential in shaping Arctic climate on interannual and interdecadal time scales and may be critical to determine Arctic climate variability in the coming decades. 
    more » « less
  5. Abstract Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability inζis anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N andζchanges arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated withζ. This interpretation contrasts with past studies that understoodζand AMOC as being in geostrophic balance with one another. 
    more » « less