skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Why can't we predict traits from the environment?
Summary Plant functional traits are powerful ecological tools, but the relationships between plant traits and climate (or environmental variables more broadly) are often remarkably weak. This presents a paradox: Plant traits govern plant interactions with their environment, but the environment does not strongly predict the traits of plants living there. Unpacking this paradox requires differentiating the mechanisms of trait variation and potential confounds of trait–environment relationships at different evolutionary and ecological scales ranging from within species to among communities. It also necessitates a more integrated understanding of physiological and evolutionary equifinality among many traits and plant strategies, and challenges us to understand how supposedly ‘functional’ traits integrate into a whole‐organism phenotype in ways that may be largely orthogonal to environmental tolerances.  more » « less
Award ID(s):
2216855 2003205
PAR ID:
10385810
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
237
Issue:
6
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1998-2004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Predictive relationships between plant traits and environmental factors can be derived at global and regional scales, informing efforts to reorient ecological models around functional traits. However, in a changing climate, the environmental variables used as predictors in such relationships are far from stationary. This could yield errors in trait–environment model predictions if timescale is not accounted for.Here, the timescale dependence of trait–environment relationships is investigated by regressingin situtrait measurements of specific leaf area, leaf nitrogen content, and wood density on local climate characteristics summarized across several increasingly long timescales.We identify contrasting responses of leaf and wood traits to climate timescale. Leaf traits are best predicted by recent climate timescales, while wood density is a longer term memory trait. The use of sub‐optimal climate timescales reduces the accuracy of the resulting trait–environment relationships.This study concludes that plant traits respond to climate conditions on the timescale of tissue lifespans rather than long‐term climate normals, even at large spatial scales where multiple ecological and physiological mechanisms drive trait change. Thus, determining trait–environment relationships with temporally relevant climate variables may be critical for predicting trait change in a nonstationary climate system. 
    more » « less
  2. Abstract To predict ecological responses at broad environmental scales, grass species are commonly grouped into two broad functional types based on photosynthetic pathway. However, closely related species may have distinctive anatomical and physiological attributes that influence ecological responses, beyond those related to photosynthetic pathway alone. Hyperspectral leaf reflectance can provide an integrated measure of covarying leaf traits that may result from phylogenetic trait conservatism and/or environmental conditions. Understanding whether spectra‐trait relationships are lineage specific or reflect environmental variation across sites is necessary for using hyperspectral reflectance to predict plant responses to environmental changes across spatial scales. We measured hyperspectral leaf reflectance (400–2400 nm) and 12 structural, biochemical, and physiological leaf traits from five grass‐dominated sites spanning the Great Plains of North America. We assessed if variation in leaf reflectance spectra among grass species is explained more by evolutionary lineage (as captured by tribes or subfamilies), photosynthetic pathway (C3or C4), or site differences. We then determined whether leaf spectra can be used to predict leaf traits within and across lineages. Our results using redundancy analysis ordination (RDA) show that grass tribe identity explained more variation in leaf spectra (adjustedR2 = 0.12) than photosynthetic pathway, which explained little variation in leaf spectra (adjustedR2 = 0.00). Furthermore, leaf reflectance from the same tribe across multiple sites was more similar than leaf reflectance from the same site across tribes (adjustedR2 = 0.12 and 0.08, respectively). Across all sites and species, trait predictions based on spectra ranged considerably in predictive accuracies (R2 = 0.65 to <0.01), butR2was >0.80 for certain lineages and sites. The relationship between Vcmax, a measure of photosynthetic capacity, and spectra was particularly promising. Chloridoideae, a lineage more common at drier sites, appears to have distinct spectra‐trait relationships compared with other lineages. Overall, our results show that evolutionary relatedness explains more variation in grass leaf spectra than photosynthetic pathway or site, but consideration of lineage‐ and site‐specific trait relationships is needed to interpret spectral variation across large environmental gradients. 
    more » « less
  3. Summary Concurrent measurement of multiple foliar traits to assess the full range of trade‐offs among and within taxa and across broad environmental gradients is limited. Leaf spectroscopy can quantify a wide range of foliar functional traits, enabling assessment of interrelationships among traits and with the environment.We analyzed leaf trait measurements from 32 sites along the wide eco‐climatic gradient encompassed by the US National Ecological Observatory Network (NEON). We explored the relationships among 14 foliar traits of 1103 individuals across and within species, and with environmental factors.Across all species pooled, the relationships between leaf economic traits (leaf mass per area, nitrogen) and traits indicative of defense and stress tolerance (phenolics, nonstructural carbohydrates) were weak, but became strong within certain species. Elevation, mean annual temperature and precipitation weakly predicted trait variation across species, although some traits exhibited species‐specific significant relationships with environmental factors.Foliar functional traits vary idiosyncratically and species express diverse combinations of leaf traits to achieve fitness. Leaf spectroscopy offers an effective approach to quantify intra‐species trait variation and covariation, and potentially could be used to improve the characterization of vegetation in Earth system models. 
    more » « less
  4. Abstract Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change. 
    more » « less
  5. A fundamental assumption of functional ecology is that functional traits are related to interspecific variation in performance. However, the relationship between functional traits and performance is often weak or uncertain, especially for plants. A potential explanation for this inconsistency is that the relationship between functional traits and vital rates (e.g., growth and mortality) is dependent on local environmental conditions, which would lead to variation in trait-rate relationships across environmental gradients. In this study, we examined trait-rate relationships for six functional traits (seed mass, wood density, maximum height, leaf mass per area, leaf area, and leaf dry matter content) using long-term data on seedling growth and survival of woody plant species from eight forest sites spanning a pronounced precipitation and soil phosphorus gradient in central Panama. For all traits considered except for leaf mass per area-mortality, leaf mass per area-growth, and leaf area-mortality relationships, we found widespread variation in the strength of trait-rate relationships across sites. For some traits, trait-rate relationships showed no overall trend but displayed wide site-to-site variation. In a small subset of cases, variation in trait-rate relationships was explained by soil phosphorus availability. Our results demonstrate that environmental gradients have the potential to influence how functional traits are related to growth and mortality rates, though much variation remains to be explained. Accounting for site-to-site variation may help resolve a fundamental issue in trait-based ecology – that traits are often weakly related to performance – and improve the utility of functional traits for explaining key ecological and evolutionary processes. 
    more » « less