skip to main content


Title: Widespread variation in functional trait-vital rate relationships in tropical tree seedlings across a precipitation and soil phosphorus gradient
A fundamental assumption of functional ecology is that functional traits are related to interspecific variation in performance. However, the relationship between functional traits and performance is often weak or uncertain, especially for plants. A potential explanation for this inconsistency is that the relationship between functional traits and vital rates (e.g., growth and mortality) is dependent on local environmental conditions, which would lead to variation in trait-rate relationships across environmental gradients. In this study, we examined trait-rate relationships for six functional traits (seed mass, wood density, maximum height, leaf mass per area, leaf area, and leaf dry matter content) using long-term data on seedling growth and survival of woody plant species from eight forest sites spanning a pronounced precipitation and soil phosphorus gradient in central Panama. For all traits considered except for leaf mass per area-mortality, leaf mass per area-growth, and leaf area-mortality relationships, we found widespread variation in the strength of trait-rate relationships across sites. For some traits, trait-rate relationships showed no overall trend but displayed wide site-to-site variation. In a small subset of cases, variation in trait-rate relationships was explained by soil phosphorus availability. Our results demonstrate that environmental gradients have the potential to influence how functional traits are related to growth and mortality rates, though much variation remains to be explained. Accounting for site-to-site variation may help resolve a fundamental issue in trait-based ecology – that traits are often weakly related to performance – and improve the utility of functional traits for explaining key ecological and evolutionary processes.  more » « less
Award ID(s):
1845403
NSF-PAR ID:
10407109
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Dryad
Date Published:
Edition / Version:
3
Subject(s) / Keyword(s):
soil nutrients forest dynamics Panama rainfall gradient tropics FOS: Natural sciences
Format(s):
Medium: X Size: 1152066 bytes
Size(s):
1152066 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. The role of intraspecific trait variation in functional ecology has gained traction in recent years as many papers have observed its importance in driving community diversity and ecology. Yet much of the work in this field relies on field-based trait surveys. Here, we used continuous canopy trait information derived from remote sensing data of a highly polymorphic tree species, Metrosideros polymorpha, to quantify environmental controls on intraspecific trait variation. M. polymorpha, an endemic, keystone tree species in Hawai’i, varies morphologically, chemically, and genetically across broad elevation and soil substrate age gradients, making it an ideal model organism to explore large-scale environmental drivers of intraspecific trait variation. M. polymorpha canopy reflectance (visible to shortwave infrared; 380–2510 nm) and light detection and ranging (LiDAR) data collected by the Global Airborne Observatory were modeled to canopy trait estimates of leaf mass per area, chlorophyll a and b, carotenoids, total carbon, nitrogen, phosphorus, phenols, cellulose, and top of canopy height using previously developed leaf chemometric equations. We explored how these derived traits varied across environmental gradients by extracting elevation, slope, aspect, precipitation, and soil substrate age data at canopy locations. We then obtained the feature importance values of the environmental factors in predicting each leaf trait by training random forest models to predict leaf traits individually. Of these environmental factors, elevation was the most important predictor for all canopy traits. Elevation not only affected canopy traits directly but also indirectly by influencing the relationships between soil substrate age and canopy traits as well as between nitrogen and other traits, as indicated by the change in slope between the variables at different elevation ranges. In conclusion, intraspecific variation in M. polymorpha traits derived from remote sensing adheres to known leaf economic spectrum (LES) patterns as well as interspecific LES traits previously mapped using imaging spectroscopy.

     
    more » « less
  2. Summary

    Concurrent measurement of multiple foliar traits to assess the full range of trade‐offs among and within taxa and across broad environmental gradients is limited. Leaf spectroscopy can quantify a wide range of foliar functional traits, enabling assessment of interrelationships among traits and with the environment.

    We analyzed leaf trait measurements from 32 sites along the wide eco‐climatic gradient encompassed by the US National Ecological Observatory Network (NEON). We explored the relationships among 14 foliar traits of 1103 individuals across and within species, and with environmental factors.

    Across all species pooled, the relationships between leaf economic traits (leaf mass per area, nitrogen) and traits indicative of defense and stress tolerance (phenolics, nonstructural carbohydrates) were weak, but became strong within certain species. Elevation, mean annual temperature and precipitation weakly predicted trait variation across species, although some traits exhibited species‐specific significant relationships with environmental factors.

    Foliar functional traits vary idiosyncratically and species express diverse combinations of leaf traits to achieve fitness. Leaf spectroscopy offers an effective approach to quantify intra‐species trait variation and covariation, and potentially could be used to improve the characterization of vegetation in Earth system models.

     
    more » « less
  3. Abstract

    Environmental gradients act as potent filters on species distributions driving compositional shifts across communities. Compositional shifts may reflect differences in physiological tolerances to a limiting resource that result in broad distributions for tolerant species and restricted distributions for intolerant species (i.e. a nested pattern). Alternatively, trade‐offs in resource use or conflicting species' responses to multiple resources can result in complete turnover of species along gradients.

    We combined trait (leaf area, leaf mass per area, wood density and maximum height) and distribution data for 550 tree species to examine taxonomic and functional composition at 72 sites across strong gradients of soil phosphorus (P) and rainfall in central Panama.

    We determined whether functional and taxonomic composition was nested or turned over completely and whether community mean traits and species composition were more strongly driven by P or moisture.

    Turnover characterized the functional composition of tree communities. Leaf traits responded to both gradients, with species having larger and thinner leaves in drier and more fertile sites than in wetter and less fertile sites. These leaf trait–moisture relationships contradict predictions based on drought responses and suggest a greater role for differences in light availability than in moisture. Shifts in wood density and maximum height were weaker than for leaf traits with taller species dominating wet sites and low wood density species dominating P‐rich sites.

    Turnover characterized the taxonomic composition of tree communities. Geographic distances explained a larger fraction of variation for taxonomic composition than for functional composition, and community mean traits were more strongly driven by P than moisture.

    Synthesis. Our results offer weak support for the tolerance hypothesis for tree communities in central Panama. Instead, we observe functional and taxonomic turnover reflecting trade‐offs and conflicting species' responses to multiple abiotic factors including moisture, soil phosphorus and potentially other correlated variables (e.g. light).

     
    more » « less
  4. Abstract

    Wisconsin's plant communities are responding to shifting disturbance regimes, habitat fragmentation, aerial nitrogen deposition, exotic species invasions, ungulate herbivory, and successional processes. To better understand how plant functional traits mediate species' responses to changing environmental conditions, we collected a large set of functional trait data for vascular plant species occupying Wisconsin forests and grasslands. We used standard protocols to make 76,213 measurements of 34 quantitative traits. These data provide rich information on genome size, physical leaf traits (length, width, circularity, thickness, dry matter content, specific leaf area, etc.), chemical leaf traits (carbon, nitrogen, phosphorus, potassium, calcium, magnesium, ash), life history traits (vegetative and flower heights, seed mass), and traits affecting plant palatability (leaf fiber, fat, and lignin). These trait values derive from replicate measurements on 12+ individuals of each species from multiple sites and 45+ individuals for a selected subset of species. Measurements typically reflect values for individuals although some chemical traits involved composite samples from several individuals at the same site. We also qualitatively characterized each species by plant family, woodiness, functional group, and Raunkiaer lifeform. These data allow us to characterize trait dimensionality, differentiation, and covariation among temperate plant species (e.g., leaf and stem economic syndromes). We can also characterize species' responses to environmental gradients and drivers of ecological change. With survey and resurvey data available from >400 sites in Wisconsin, we can analyze variation in community trait distributions and diversity over time and space. These data therefore allow us to assess how trait divergence vs. convergence affects community assembly and how traits may be related to half‐century shifts in the distribution and abundance of these species. The data set can be used for non‐commercial purposes. The data set is licensed as follows: CC‐By Attribution 4.0 International. We request users cite both the OSF data set and this Ecology data paper publication.

     
    more » « less
  5. Abstract

    Despite long‐standing theory for classifying plant ecological strategies, limited data directly link organismal traits to whole‐plant growth rates (GRs). We compared trait‐growth relationships based on three prominent theories: growth analysis, Grime's competitive–stress tolerant–ruderal (CSR) triangle, and the leaf economics spectrum (LES). Under these schemes, growth is hypothesized to be predicted by traits related to relative biomass investment, leaf structure, or gas exchange, respectively. We also considered traits not included in these theories but that might provide potential alternative best predictors of growth. In phylogenetic analyses of 30 diverse milkweeds (Asclepiasspp.) and 21 morphological and physiological traits, GR (total biomass produced per day) varied 50‐fold and was best predicted by biomass allocation to leaves (as predicted by growth analysis) and the CSR traits of leaf size and leaf dry matter content. Total leaf area (LA) and plant height were also excellent predictors of whole‐plant GRs. Despite two LES traits correlating with growth (mass‐based leaf nitrogen and area‐based leaf phosphorus contents), these were in the opposite direction of that predicted by LES, such that higher N and P contents corresponded to slower growth. The remaining LES traits (e.g., leaf gas exchange) were not predictive of plant GRs. Overall, differences in GR were driven more by whole‐plant characteristics such as biomass fractions and total LA than individual leaf‐level traits such as photosynthetic rate or specific leaf area. Our results are most consistent with classical growth analysis—combining leaf traits with whole‐plant allocation to best predict growth. However, given that destructive biomass measures are often not feasible, applying easy‐to‐measure leaf traits associated with the CSR classification appear more predictive of whole‐plant growth than LES traits. Testing the generality of this result across additional taxa would further improve our ability to predict whole‐plant growth from functional traits across scales.

     
    more » « less