.
(Ed.)
This paper proposes a new approach for the adaptive functional estimation of second order infinite dimensional systems with structured perturbations. First, the proposed observer is formulated in the natural second order setting thus ensuring the time derivative of the estimated position is the estimated velocity, and therefore called natural adaptive observer. Assuming that the system does not yield a positive real system when placed in first order form, then the next step in deriving parameter adaptive laws is to assume a form of input-output collocation. Finally, to estimate structured perturbations taking the form of functions of the position and/or velocity outputs, the parameter space is not identified by a finite dimensional Euclidean space but instead is considered in a Reproducing Kernel Hilbert Space. Such a setting allows one not to be restricted by a priori assumptions on the dimension of the parameter spaces. Convergence of the position and velocity errors in their respective norms is established via the use of a parameter-dependent Lyapunov function, specifically formulated for second order infinite dimensional systems that include appropriately defined norms of the functional errors in the reproducing kernel Hilbert spaces. Boundedness of the functional estimates immediately follow and via an appropriate definition of a persistence of excitation condition for functional estimation, a functional convergence follows. When the system is governed by vector second order dynamics, all abstract spaces for the state evolution collapse to a Euclidean space and the natural adaptive observer results simplify. Numerical results of a second order PDE and a multi-degree of freedom finite dimensional mechanical system are presented.
more »
« less
An official website of the United States government

