skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel composite knee structure metrics of disease activity and cumulative damage predict the development of accelerated knee osteoarthritis: data from the osteoarthritis initiative
Award ID(s):
1723429
PAR ID:
10385893
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Osteoarthritis and Cartilage
Volume:
27
Issue:
S1
ISSN:
1063-4584
Page Range / eLocation ID:
S333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background We aimed to determine if composite structural measures of knee osteoarthritis (KOA) progression on magnetic resonance (MR) imaging can predict the radiographic onset of accelerated knee osteoarthritis. Methods We used data from a nested case-control study among participants from the Osteoarthritis Initiative without radiographic KOA at baseline. Participants were separated into three groups based on radiographic disease progression over 4 years: 1) accelerated (Kellgren-Lawrence grades [KL] 0/1 to 3/4), 2) typical (increase in KL, excluding accelerated osteoarthritis), or 3) no KOA (no change in KL). We assessed tibiofemoral cartilage damage (four regions: medial/lateral tibia/femur), bone marrow lesion (BML) volume (four regions: medial/lateral tibia/femur), and whole knee effusion-synovitis volume on 3 T MR images with semi-automated programs. We calculated two MR-based composite scores. Cumulative damage was the sum of standardized cartilage damage. Disease activity was the sum of standardized volumes of effusion-synovitis and BMLs. We focused on annual images from 2 years before to 2 years after radiographic onset (or a matched time for those without knee osteoarthritis). To determine between group differences in the composite metrics at all time points, we used generalized linear mixed models with group (3 levels) and time (up to 5 levels). For our prognostic analysis, we used multinomial logistic regression models to determine if one-year worsening in each composite metric change associated with future accelerated knee osteoarthritis (odds ratios [OR] based on units of 1 standard deviation of change). Results Prior to disease onset, the accelerated KOA group had greater average disease activity compared to the typical and no KOA groups and this persisted up to 2 years after disease onset. During a pre-radiographic disease period, the odds of developing accelerated KOA were greater in people with worsening disease activity [versus typical KOA OR (95% confidence interval [CI]): 1.58 (1.08 to 2.33); versus no KOA: 2.39 (1.55 to 3.71)] or cumulative damage [versus typical KOA: 1.69 (1.14 to 2.51); versus no KOA: 2.11 (1.41 to 3.16)]. Conclusions MR-based disease activity and cumulative damage metrics may be prognostic markers to help identify people at risk for accelerated onset and progression of knee osteoarthritis. 
    more » « less
  2. null (Ed.)
    Osteoarthritis (OA) is the most common form of arthritis and can often occur in the knee. While convolutional neural networks (CNNs) have been widely used to study medical images, the application of a 3-dimensional (3D) CNN in knee OA diagnosis is limited. This study utilizes a 3D CNN model to analyze sequences of knee magnetic resonance (MR) images to perform knee OA classification. An advantage of using 3D CNNs is the ability to analyze the whole sequence of 3D MR images as a single unit as opposed to a traditional 2D CNN, which examines one image at a time. Therefore, 3D features could be extracted from adjacent slices, which may not be detectable from a single 2D image. The input data for each knee were a sequence of double-echo steady-state (DESS) MR images, and each knee was labeled by the Kellgren and Lawrence (KL) grade of severity at levels 0–4. In addition to the 5-category KL grade classification, we further examined a 2-category classification that distinguishes non-OA (KL ≤ 1) from OA (KL ≥ 2) knees. Clinically, diagnosing a patient with knee OA is the ultimate goal of assigning a KL grade. On a dataset with 1100 knees, the 3D CNN model that classifies knees with and without OA achieved an accuracy of 86.5% on the validation set and 83.0% on the testing set. We further conducted a comparative study between MRI and X-ray. Compared with a CNN model using X-ray images trained from the same group of patients, the proposed 3D model with MR images achieved higher accuracy in both the 5-category classification (54.0% vs. 50.0%) and the 2-category classification (83.0% vs. 77.0%). The result indicates that MRI, with the application of a 3D CNN model, has greater potential to improve diagnosis accuracy for knee OA clinically than the currently used X-ray methods. 
    more » « less