skip to main content


Title: A wind-blown bubble in the Central Molecular Zone cloud G0.253+0.016
ABSTRACT

G0.253+0.016, commonly referred to as ‘the Brick’ and located within the Central Molecular Zone, is one of the densest (≈103–4 cm−3) molecular clouds in the Galaxy to lack signatures of widespread star formation. We set out to constrain the origins of an arc-shaped molecular line emission feature located within the cloud. We determine that the arc, centred on $\lbrace l_{0},b_{0}\rbrace =\lbrace 0{_{.}^{\circ}} 248,\, 0{_{.}^{\circ}} 018\rbrace$, has a radius of 1.3 pc and kinematics indicative of the presence of a shell expanding at $5.2^{+2.7}_{-1.9}$ $\mathrm{\, km\, s}^{-1}$. Extended radio continuum emission fills the arc cavity and recombination line emission peaks at a similar velocity to the arc, implying that the molecular gas and ionized gas are physically related. The inferred Lyman continuum photon rate is NLyC = 1046.0–1047.9 photons s−1, consistent with a star of spectral type B1-O8.5, corresponding to a mass of ≈12–20 M⊙. We explore two scenarios for the origin of the arc: (i) a partial shell swept up by the wind of an interloper high-mass star and (ii) a partial shell swept up by stellar feedback resulting from in situ star formation. We favour the latter scenario, finding reasonable (factor of a few) agreement between its morphology, dynamics, and energetics and those predicted for an expanding bubble driven by the wind from a high-mass star. The immediate implication is that G0.253+0.016 may not be as quiescent as is commonly accepted. We speculate that the cloud may have produced a ≲103 M⊙ star cluster ≳0.4 Myr ago, and demonstrate that the high-extinction and stellar crowding observed towards G0.253+0.016 may help to obscure such a star cluster from detection.

 
more » « less
Award ID(s):
2115428 2008101 1816715
NSF-PAR ID:
10385990
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4758-4774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT G0.253+0.016, aka ‘the Brick’, is one of the most massive (>105 M⊙) and dense (>104 cm−3) molecular clouds in the Milky Way’s Central Molecular Zone. Previous observations have detected tentative signs of active star formation, most notably a water maser that is associated with a dust continuum source. We present ALMA Band 6 observations with an angular resolution of 0.13 arcsec (1000 AU) towards this ‘maser core’ and report unambiguous evidence of active star formation within G0.253+0.016. We detect a population of eighteen continuum sources (median mass ∼2 M⊙), nine of which are driving bi-polar molecular outflows as seen via SiO (5–4) emission. At the location of the water maser, we find evidence for a protostellar binary/multiple with multidirectional outflow emission. Despite the high density of G0.253+0.016, we find no evidence for high-mass protostars in our ALMA field. The observed sources are instead consistent with a cluster of low-to-intermediate-mass protostars. However, the measured outflow properties are consistent with those expected for intermediate-to-high-mass star formation. We conclude that the sources are young and rapidly accreting, and may potentially form intermediate- and high-mass stars in the future. The masses and projected spatial distribution of the cores are generally consistent with thermal fragmentation, suggesting that the large-scale turbulence and strong magnetic field in the cloud do not dominate on these scales, and that star formation on the scale of individual protostars is similar to that in Galactic disc environments. 
    more » « less
  2. Abstract

    Magnetic fields of molecular clouds in the central molecular zone (CMZ) have been relatively under-observed at sub-parsec resolution. Here, we report JCMT/POL2 observations of polarized dust emission in the CMZ, which reveal magnetic field structures in dense gas at ∼0.5 pc resolution. The 11 molecular clouds in our sample include two in the western part of the CMZ (Sgr C and a farside cloud candidate), four around the Galactic longitude 0 (the 50 km s−1cloud, CO 0.02−0.02, theStone, and theSticksandStrawamong the Three Little Pigs), and five along the Dust Ridge (G0.253+0.016, clouds b, c, d, and e/f), for each of which we estimate the magnetic field strength using the angular dispersion function method. The morphologies of magnetic fields in the clouds suggest potential imprints of feedback from expanding Hiiregions and young massive star clusters. A moderate correlation between the total viral parameter versus the star formation rate (SFR) and the dense gas fraction of the clouds is found. A weak correlation between the mass-to-flux ratio and the SFR, and a weak anticorrelation between the magnetic field and the dense gas fraction are also found. Comparisons between magnetic fields and other dynamic components in clouds suggest a more dominant role of self-gravity and turbulence in determining the dynamical states of the clouds and affecting star formation at the studied scales.

     
    more » « less
  3. Abstract

    We have observed the compact H ii region complex nearest to the dynamical center of the Galaxy, G−0.02−0.07, using ALMA in the H42α recombination line, CS J = 2–1, H13CO+J = 1–0, and SiO v = 0, J = 2–1 emission lines, and the 86 GHz continuum emission. The H ii regions HII-A to HII-C in the cluster are clearly resolved into a shell-like feature with a bright half and a dark half in the recombination line and continuum emission. The analysis of the absorption features in the molecular emission lines show that H ii-A, B, and C are located on the near side of the “Galactic center 50 km s−1 molecular cloud” (50MC), but HII-D is located on the far side of it. The electron temperatures and densities ranges are Te = 5150–5920 K and ne = 950–2340 cm−3, respectively. The electron temperatures in the bright half are slightly lower than those in the dark half, while the electron densities in the bright half are slightly higher than those in the dark half. The H ii regions are embedded in the ambient molecular gas. There are some molecular gas components compressed by a C-type shock wave around the H ii regions. From the line width of the H42α recombination line, the expansion velocities of HII-A, HII-B, HII-C, and HII-D are estimated to be Vexp = 16.7, 11.6, 11.1, and 12.1 km s−1, respectively. The expansion timescales of HII-A, HII-B, HII-C, and HII-D are estimated to be tage ≃ 1.4 × 104, 1.7 × 104, 2.0 × 104, and 0.7 × 104 yr, respectively. The spectral types of the central stars from HII-A to HII-D are estimated to be O8V, O9.5V, O9V, and B0V, respectively. These derived spectral types are roughly consistent with the previous radio estimation. The positional relation among the H ii regions, the SiO molecule enhancement area, and Class-I maser spots suggest that a shock wave caused by a cloud–cloud collision propagated along the line from HII-C to HII-A in the 50MC. The shock wave would have triggered the massive star formation.

     
    more » « less
  4. Abstract

    Strong lensing offers a precious opportunity for studying the formation and early evolution of super star clusters that are rare in our cosmic backyard. The Sunburst Arc, a lensed Cosmic Noon galaxy, hosts a young super star cluster with escaping Lyman continuum radiation. Analyzing archival Hubble Space Telescope images and emission line data from Very Large Telescope/MUSE and X-shooter, we construct a physical model for the cluster and its surrounding photoionized nebula. We confirm that the cluster is ≲4 Myr old, is extremely massiveM∼ 107M, and yet has a central component as compact as several parsecs, and we find a gas-phase metallicityZ= (0.22 ± 0.03)Z. The cluster is surrounded by ≳105Mof dense clouds that have been pressurized toP∼ 109K cm−3by perhaps stellar radiation at within 10 pc. These should have large neutral columnsNHI> 1022.8cm−2to survive rapid ejection by radiation pressure. The clouds are likely dusty as they show gas-phase depletion of silicon, and may be conducive to secondary star formation ifNHI> 1024cm−2or if they sink farther toward the cluster center. Detecting strong [Niii]λλ1750,1752, we infer heavy nitrogen enrichmentlog(N/O)=0.210.11+0.10. This requires efficiently retaining ≳500Mof nitrogen in the high-pressure clouds from massive stars heavier than 60Mup to 4 Myr. We suggest a physical origin of the high-pressure clouds from partial or complete condensation of slow massive star ejecta, which may have an important implication for the puzzle of multiple stellar populations in globular clusters.

     
    more » « less
  5. Abstract One of the most poorly understood aspects of low-mass star formation is how multiple-star systems are formed. Here we present the results of Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations toward a forming quadruple protostellar system, G206.93-16.61E2, in the Orion B molecular cloud. ALMA 1.3 mm continuum emission reveals four compact objects, of which two are Class I young stellar objects and the other two are likely in prestellar phase. The 1.3 mm continuum emission also shows three asymmetric ribbon-like structures that are connected to the four objects, with lengths ranging from ∼500 to ∼2200 au. By comparing our data with magnetohydrodynamic simulations, we suggest that these ribbons trace accretion flows and also function as gas bridges connecting the member protostars. Additionally, ALMA CO J = 2−1 line emission reveals a complicated molecular outflow associated with G206.93-16.61E2, with arc-like structures suggestive of an outflow cavity viewed pole-on. 
    more » « less