skip to main content


Title: Inpainting Hydrodynamical Maps with Deep Learning
Abstract

From 1000 hydrodynamic simulations of the CAMELS project, each with a different value of the cosmological and astrophysical parameters, we generate 15,000 gas temperature maps. We use a state-of-the-art deep convolutional neural network to recover missing data from those maps. We mimic the missing data by applying regular and irregular binary masks that cover either 15% or 30% of the area. We quantify the reliability of our results using two summary statistics: (1) the distance between the probability density functions, estimated using the Kolmogorov–Smirnov (K-S) test, and (2) the 2D power spectrum. We find an excellent agreement between the model prediction and the unmasked maps when using the power spectrum: better than 1% fork< 20hMpc−1for any irregular mask. For regular masks, we observe a systematic offset of ∼5% when covering 15% of the maps, while the results become unreliable when 30% of the data is missing. The observed K-S testp-values favor the null hypothesis that the reconstructed and the ground-truth maps are drawn from the same underlying distribution when irregular masks are used. For regular-shaped masks, on the other hand, we find a strong evidence that the two distributions do not match each other. Finally, we use the model, trained on gas temperature maps, to inpaint maps from fields not used during model training. We find that, visually, our model is able to reconstruct the missing pixels from the maps of those fields with great accuracy, although its performance using summary statistics depends strongly on the considered field.

 
more » « less
Award ID(s):
2108944
NSF-PAR ID:
10386055
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 132
Size(s):
["Article No. 132"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  2. Abstract

    The nearby irregular galaxy NGC 4449 has a star formation rate of ∼0.4Myr−1and should host of order 70 supernova remnants (SNRs) younger than 20,000 yr, a typical age for SNRs expanding into an interstellar medium (ISM) with a density of 1 cm−3to reach the radiative phase. We have carried out an optical imaging and spectroscopic survey in an attempt to identify these SNRs. This task is challenging because diffuse gas with elevated ratios of [Sii]:Hαis omnipresent in NGC 4449, causing confusion when using this common diagnostic for SNRs. Using narrowband interference-filter images, we first identified 49 objects that have elevated [Sii]:Hαratios compared to nearby Hiiregions. Using Gemini-N and GMOS, we then obtained high-resolution spectra of 30 of these SNR candidates, 25 of which have [Sii]:Hαratios greater than 0.5. Of these, 15 nebulae are almost certainly SNRs, based on a combination of characteristics: higher [Oi]:Hαratios and broader line widths than observed from Hiiregions. The remainder are good candidates as well, but need additional confirmation. Surprisingly, despite having superior imaging and spectroscopic data sets to examine, we are unable to confirm most of the candidates suggested by Leonidaki et al. While NGC 4449 is likely an extreme case because of the high surface brightness and elevated [Sii]:Hαratio of diffuse gas, it highlights the need for sensitive high-resolution optical spectroscopy, or high spatial resolution radio or X-ray observations that can ensure accurate SNR identifications in external galaxies.

     
    more » « less
  3. Abstract

    When testing hypotheses about which of two competing models is better, say A and B, the difference is often not significant. An alternative, complementary approach, is to measure how often model A is better than model B regardless of how slight or large the difference. The hypothesis concerns whether or not the percentage of time that model A is better than model B is larger than 50%. One generalized test statistic that can be used is the power-divergence test, which encompasses many familiar goodness-of-fit test statistics, such as the loglikelihood-ratio and PearsonX2tests. Theoretical results justify using thedistribution for the entire family of test statistics, wherekis the number of categories. However, these results assume that the underlying data are independent and identically distributed, which is often violated. Empirical results demonstrate that the reduction to two categories (i.e., model A is better than model B versus model B is better than A) results in a test that is reasonably robust to even severe departures from temporal independence, as well as contemporaneous correlation. The test is demonstrated on two different example verification sets: 6-h forecasts of eddy dissipation rate (m2/3s−1) from two versions of the Graphical Turbulence Guidance model and for 12-h forecasts of 2-m temperature (°C) and 10-m wind speed (m s−1) from two versions of the High-Resolution Rapid Refresh model. The novelty of this paper is in demonstrating the utility of the power-divergence statistic in the face of temporally dependent data, as well as the emphasis on testing for the “frequency-of-better” alongside more traditional measures.

     
    more » « less
  4. Abstract

    The Circumgalactic HαSpectrograph (CHαS) is a ground-based optical integral field spectrograph designed to detect ultrafaint extended emission from diffuse ionized gas in the nearby universe. CHαS is particularly well suited for making direct detections of tenuous Hαemission from the circumgalactic medium (CGM) surrounding low-redshift galaxies. It efficiently maps large regions of the CGM in a single exposure, targeting nearby galaxies (d< 35 Mpc) where the CGM is expected to fill the field of view. We are commissioning CHαS as a facility instrument at MDM Observatory. CHαS is deployed in the focal plane of the Hiltner 2.4 m telescope, utilizing nearly all of the telescope’s unvignetted focal plane (10′–15′) to conduct wide-field spectroscopic imaging. The catadioptric design provides excellent wide-field imaging performance. CHαS is a pupil-imaging spectrograph employing a microlens array to divide the field of view into >60,000 spectra. CHαS achieves an angular resolution of [1.3–2.6] arcseconds and a resolving power ofR= [10,000–20,000]. Accordingly, the spectrograph can resolve structure on the scale of 1–5 kpc (at 10 Mpc) and measure velocities down to 15–30 km s−1. CHαS intentionally operates over a narrow (30 Å) bandpass; however, it is configured to adjust the central wavelength and target a broad range of optical emission lines individually. A high–diffraction efficiency volume phase holographic grating ensures high throughput across configurations. CHαS maintains a high grasp and moderate spectral resolution, providing an ideal combination for mapping discrete, ultralow–surface brightness emission on the order of a few milli-Rayleigh.

     
    more » « less
  5. Abstract

    We explore how the assumption of ionization equilibrium modulates the modeled intergalactic medium at the end of the hydrogen epoch of reionization using the cosmological radiation hydrodynamicTechnicolor Dawnsimulation. In neutral and partially ionized regions where the metagalactic ultraviolet background is weak, the ionization timescaletion≡ Γ−1exceeds the Hubble time. Assuming photoionization equilibrium in such regions artificially boosts the ionization rate, accelerating reionization. By contrast, the recombination timetrec<tionin photoionized regions, with the result that assuming photoionization equilibrium artificially increases the neutral hydrogen fraction. Using snapshots in the range 8 ≥z≥ 5, we compare the predicted Lyαforest (LAF) flux power spectrum with and without the assumption of ionization equilibrium. Small scales (k> 0.1 rad s km−1) exhibit reduced power from 7 ≤z≤ 5.5 in the ionization equilibrium case, while larger scales are unaffected. This occurs for the same reasons: ionization equilibrium artificially suppresses the neutral fraction in self-shielded gas and boosts ionizations in voids, suppressing small-scale fluctuations in the ionization field. When the volume-averaged neutral fraction drops below 10−4, the signature of nonequilibrium ionizations on the LAF disappears. Comparing with recent observations indicates that these nonequilibrium effects are not yet observable in the LAF flux power spectrum.

     
    more » « less