skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


This content will become publicly available on November 1, 2025

Title: Magnetic field morphology and evolution in the Central Molecular Zone and its effect on gas dynamics
The interstellar medium in the Milky Way’s Central Molecular Zone (CMZ) is known to be strongly magnetised, but its large-scale morphology and impact on the gas dynamics are not well understood. We explore the impact and properties of magnetic fields in the CMZ using three-dimensional non-self gravitating magnetohydrodynamical simulations of gas flow in an external Milky Way barred potential. We find that: (1) The magnetic field is conveniently decomposed into a regular time-averaged component and an irregular turbulent component. The regular component aligns well with the velocity vectors of the gas everywhere, including within the bar lanes. (2) The field geometry transitions from parallel to the Galactic plane near ɀ = 0 to poloidal away from the plane. (3) The magneto-rotational instability (MRI) causes an in-plane inflow of matter from the CMZ gas ring towards the central few parsecs of 0.01−0.1 Myr−1that is absent in the unmagnetised simulations. However, the magnetic fields have no significant effect on the larger-scale bar-driven inflow that brings the gas from the Galactic disc into the CMZ. (4) A combination of bar inflow and MRI-driven turbulence can sustain a turbulent vertical velocity dispersion ofσɀ= 5 km s−1on scales of 20 pc in the CMZ ring. The MRI alone sustains a velocity dispersion ofσɀ≃ 3 km s−1. Both these numbers are lower than the observed velocity dispersion of gas in the CMZ, suggesting that other processes such as stellar feedback are necessary to explain the observations. (5) Dynamo action driven by differential rotation and the MRI amplifies the magnetic fields in the CMZ ring until they saturate at a value that scales with the average local density asB≃ 102 (n/103cm−3)0.33µG. Finally, we discuss the implications of our results within the observational context in the CMZ.  more » « less
Award ID(s):
2142300 2206511 2145689 2206510
PAR ID:
10569718
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Astronomy and Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
691
ISSN:
0004-6361
Page Range / eLocation ID:
A303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trendN∝Ms, wheres= 0.38 ± 0.03 is near the pressure-bounded limitsp= 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s−1, mean external pressure (0.5–4) × 108cm−3K, bound clump fraction 0.06, and typical virial parameterα= 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources andN–Mtrends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps. 
    more » « less
  2. null (Ed.)
    ABSTRACT We use hydrodynamical simulations to study the Milky Way’s central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation, and supernova feedback. We resolve the structure of the interstellar medium at sub-parsec resolution while also capturing the interaction between the CMZ and the bar-driven large-scale flow out to $$R\sim 5\, {\rm kpc}$$. Our main findings are as follows: (1) The distinction between inner (R ≲ 120 pc) and outer (120 ≲ R ≲ 450 pc) CMZ that is sometimes proposed in the literature is unnecessary. Instead, the CMZ is best described as single structure, namely a star-forming ring with outer radius R ≃ 200 pc which includes the 1.3° complex and which is directly interacting with the dust lanes that mediate the bar-driven inflow. (2) This accretion can induce a significant tilt of the CMZ out of the plane. A tilted CMZ might provide an alternative explanation to the ∞-shaped structure identified in Herschel data by Molinari et al. (3) The bar in our simulation efficiently drives an inflow from the Galactic disc (R ≃ 3 kpc) down to the CMZ (R ≃ 200 pc) of the order of $$1\rm \, M_\odot \, yr^{-1}$$, consistent with observational determinations. (4) Supernova feedback can drive an inflow from the CMZ inwards towards the circumnuclear disc of the order of $${\sim}0.03\, \rm M_\odot \, yr^{-1}$$. (5) We give a new interpretation for the 3D placement of the 20 and 50 km s−1 clouds, according to which they are close (R ≲ 30 pc) to the Galactic Centre, but are also connected to the larger scale streams at R ≳ 100 pc. 
    more » « less
  3. Abstract The Milky Way is a barred spiral galaxy withbar lanesthat bring gas toward the Galactic center. Gas flowing along these bar lanes often overshoots, and instead of accreting onto the Central Molecular Zone (CMZ), it collides with the bar lane on the opposite side of the Galaxy. We observed G5, a cloud that we believe is the site of one such collision, near the Galactic center at (ℓ,b) = ( +5.4, −0.4) with the Atacama Large Millimeter/submillimeter Array/Atacama Compact Array. We took measurements of the spectral lines12COJ= 2 → 1,13COJ= 2 → 1, C18OJ= 2 → 1, H2COJ= 303→ 202, H2COJ= 322→ 221, CH3OHJ= 422→ 312, OCSJ= 18 → 17, and SiOJ= 5 → 4. We observed a velocity bridge between two clouds at ∼50 and ∼150 km s−1in our position–velocity diagram, which is direct evidence of a cloud–cloud collision. We measured an average gas temperature of ∼60 K in G5 using H2CO integrated-intensity line ratios. We observed that the12C/13C ratio in G5 is consistent with optically thin, or at most marginally optically thick12CO. We measured 1.5 × 10 19 cm 2 ( K km s 1 ) 1 for the local XCO, 10–20× less than the average Galactic value. G5 is strong direct observational evidence of gas overshooting the CMZ and colliding with a bar lane on the opposite side of the Galactic center. 
    more » « less
  4. Abstract The Milky Way’s central molecular zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. 2020 to investigate star formation in the CMZ. These simulations resolve the structure of the interstellar medium at sub-parsec resolution while also including the large-scale flow in which the CMZ is embedded. Our main findings are as follows. (1) While most of the star formation happens in the CMZ ring at R ≳ 100 pc, a significant amount also occurs closer to SgrA* at R ≲ 10 pc. (2) Most of the star formation in the CMZ happens downstream of the apocentres, consistent with the “pearls-on-a-string” scenario, and in contrast to the notion that an absolute evolutionary timeline of star formation is triggered by pericentre passage. (3) Within the timescale of our simulations (∼100 Myr), the depletion time of the CMZ is constant within a factor of ∼2. This suggests that variations in the star formation rate are primarily driven by variations in the mass of the CMZ, caused for example by AGN feedback or externally-induced changes in the bar-driven inflow rate, and not by variations in the depletion time. (4) We study the trajectories of newly born stars in our simulations. We find several examples that have age and 3D velocity compatible with those of the Arches and Quintuplet clusters. Our simulations suggest that these prominent clusters originated near the collision sites where the bar-driven inflow accretes onto the CMZ, at symmetrical locations with respect to the Galactic centre, and that they have already decoupled from the gas in which they were born. 
    more » « less
  5. Abstract The Central Molecular Zone (CMZ) is the way station at the heart of our Milky Way Galaxy, connecting gas flowing in from Galactic scales with the central nucleus. Key open questions remain about its 3D structure, star formation properties, and role in regulating this gas inflow. In this work, we identify a hierarchy of discrete structures in the CMZ using column density maps from Paper I (C. Battersby et al.) We calculate the physical (N(H2),Tdust, mass, radius) and kinematic (HNCO, HCN, and HC3N moments) properties of each structure as well as their bolometric luminosities and star formation rates. We compare these properties with regions in the Milky Way disk and external galaxies. Despite the fact that the CMZ overall is well below the Gao-Solomon dense gas star formation relation (and in modest agreement with the Schmidt–Kennicutt relation), individual structures on the scale of molecular clouds generally follow these star formation relations and agree well with other Milky Way and extragalactic regions. We find that individual CMZ structures require a large external pressure (Pe/kB> 107−9K cm−3) to be considered bound; however, simple estimates suggest that most CMZ molecular-cloud-sized structures are consistent with being in pressure-bounded virial equilibrium. We perform power-law fits to the column density probability distribution functions of the inner 100 pc, SgrB2, and the outer 100 pc of the CMZ as well as several individual molecular cloud structures and find generally steeper power-law slopes (−9 <α< −2) compared with the literature (−6 <α< −1). 
    more » « less