Background Supporting mental health and wellness is of increasing interest due to a growing recognition of the prevalence and burden of mental health issues. Mood is a central aspect of mental health, and several technologies, especially mobile apps, have helped people track and understand it. However, despite formative work on and dissemination of mood-tracking apps, it is not well understood how mood-tracking apps used in real-world contexts might benefit people and what people hope to gain from them. Objective To address this gap, the purpose of this study was to understand motivations for and experiences in using mood-tracking apps from people who used them in real-world contexts. Methods We interviewed 22 participants who had used mood-tracking apps using a semistructured interview and card sorting task. The interview focused on their experiences using a mood-tracking app. We then conducted a card sorting task using screenshots of various data entry and data review features from mood-tracking apps. We used thematic analysis to identify themes around why people use mood-tracking apps, what they found useful about them, and where people felt these apps fell short. Results Users of mood-tracking apps were primarily motivated by negative life events or shifts in their own mental health that prompted them to engage in tracking and improve their situation. In general, participants felt that using a mood-tracking app facilitated self-awareness and helped them to look back on a previous emotion or mood experience to understand what was happening. Interestingly, some users reported less inclination to document their negative mood states and preferred to document their positive moods. There was a range of preferences for personalization and simplicity of tracking. Overall, users also liked features in which their previous tracked emotions and moods were visualized in figures or calendar form to understand trends. One gap in available mood-tracking apps was the lack of app-facilitated recommendations or suggestions for how to interpret their own data or improve their mood. Conclusions Although people find various features of mood-tracking apps helpful, the way people use mood-tracking apps, such as avoiding entering negative moods, tracking infrequently, or wanting support to understand or change their moods, demonstrate opportunities for improvement. Understanding why and how people are using current technologies can provide insights to guide future designs and implementations.
more »
« less
Community-Based Data Visualization for Mental Well-being with a Social Robot
Social robots have been used to support mental health. In this work, we explored their potential as community-based tools. Visualizing mood data patterns of a community with a social robot might help the community raise awareness about the emotions people feel and affecting factors from life events. This could potentially lead to adaptation of suitable coping skills enhancing the sense of belonging and support among community members. We present preliminary findings and ongoing plans for this human-robot interaction (HRI) research work on data visualizations supporting community mental health. In a two-day study, twelve participants recruited from a university community engaged with a robot displaying mood data. Given the feedback from the study, we improved the data visualization in the robot to increase accessibility, universality, and usefulness of such visualizations. In the future, we plan on conducting studies with this improved version and deploying a social robot for a community setting.
more »
« less
- Award ID(s):
- 1734100
- PAR ID:
- 10386124
- Date Published:
- Journal Name:
- ACM/IEEE International Conference on Human-Robot Interaction
- Page Range / eLocation ID:
- 839 to 843
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mental distress among young people has increased in recent years. Research suggests that greenspace may benefit mental health. The objective of this exploratory study is to further understanding of place‐based differences (i.e., urbanity) in the greenspace‐mental health association. We leverage publicly available greenspace data sets to operationalize greenspace quantity, quality, and accessibility metrics at the community‐level. Emergency department visits for young people (ages 24 and under) were coded for: anxiety, depression, mood disorders, mental and behavioral disorders, and substance use disorders. Generalized linear models investigated the association between greenspace metrics and community‐level mental health burden; results are reported as prevalence rate ratios (PRR). Urban and suburban communities with the lowest quantities of greenspace had the highest prevalence of poor mental health outcomes, particularly for mood disorders in urban areas (PRR: 1.19, 95% CI: 1.16–1.21), and substance use disorders in suburban areas (PRR: 1.35, 95% CI: 1.28–1.43). In urban, micropolitan, and rural/isolated areas further distance to greenspace was associated with a higher prevalence of poor mental health outcomes; this association was most pronounced for substance use disorders (PRRUrban: 1.31, 95% CI: 1.29–1.32; PRRMicropolitan: 1.47, 95% CI: 1.43–1.51; PRRRural 2.38: 95% CI: 2.19–2.58). In small towns and rural/isolated communities, poor mental health outcomes were more prevalent in communities with the worst greenspace quality; this association was most pronounced for mental and behavioral disorders in small towns (PRR: 1.29, 95% CI: 1.24–1.35), and for anxiety disorders in rural/isolated communities (PRR: 1.61, 95% CI: 1.43–1.82). The association between greenspace metrics and mental health outcomes among young people is place‐based with variations across the rural‐urban continuum.more » « less
-
Social robots may be a promising social-emotional tool to support adolescent mental health. However, how might interactions with a social robot in a school setting be perceived by teens? From previous studies, we gathered qualitative data suggesting a design tension between teens wanting both public and private interactions with our social robot, EMAR. In our current study, we explored interactions between a social robot and a small group of adolescents in a semi-private, school library setting. We found: (1) Some teens preferred to have a friend present while they engaged with the social robot, (2) Teens found comfort in being physically visible, but audibly private during interactions, and finally (3) Strangers in the school environment were not disruptive of the teens' robot interactions, but unexpectedly friends were. After presenting these findings, we briefly discuss how these qualitative data can be situated and our next steps for further exploration.more » « less
-
Adolescents isolated at home during the COVID19 pandemic lockdown are more likely to feel lonely and in need of social connection. Social robots may provide a much needed social interaction without the risk of contracting an infection. In this paper, we detail our co-design process used to engage adolescents in the design of a social robot prototype intended to broadly support their mental health. Data gathered from our four week design study of nine remote sessions and interviews with 16 adolescents suggested the following design requirements for a home robot: (1) be able to enact a set of roles including a coach, companion, and confidant; (2) amplify human-to-human connection by supporting peer relationships; (3) account for data privacy and device ownership. Design materials are available in open-access, contributing to best practices for the field of Human-Robot Interaction.more » « less
-
null (Ed.)Background The COVID-19 pandemic has caused several disruptions in personal and collective lives worldwide. The uncertainties surrounding the pandemic have also led to multifaceted mental health concerns, which can be exacerbated with precautionary measures such as social distancing and self-quarantining, as well as societal impacts such as economic downturn and job loss. Despite noting this as a “mental health tsunami”, the psychological effects of the COVID-19 crisis remain unexplored at scale. Consequently, public health stakeholders are currently limited in identifying ways to provide timely and tailored support during these circumstances. Objective Our study aims to provide insights regarding people’s psychosocial concerns during the COVID-19 pandemic by leveraging social media data. We aim to study the temporal and linguistic changes in symptomatic mental health and support expressions in the pandemic context. Methods We obtained about 60 million Twitter streaming posts originating from the United States from March 24 to May 24, 2020, and compared these with about 40 million posts from a comparable period in 2019 to attribute the effect of COVID-19 on people’s social media self-disclosure. Using these data sets, we studied people’s self-disclosure on social media in terms of symptomatic mental health concerns and expressions of support. We employed transfer learning classifiers that identified the social media language indicative of mental health outcomes (anxiety, depression, stress, and suicidal ideation) and support (emotional and informational support). We then examined the changes in psychosocial expressions over time and language, comparing the 2020 and 2019 data sets. Results We found that all of the examined psychosocial expressions have significantly increased during the COVID-19 crisis—mental health symptomatic expressions have increased by about 14%, and support expressions have increased by about 5%, both thematically related to COVID-19. We also observed a steady decline and eventual plateauing in these expressions during the COVID-19 pandemic, which may have been due to habituation or due to supportive policy measures enacted during this period. Our language analyses highlighted that people express concerns that are specific to and contextually related to the COVID-19 crisis. Conclusions We studied the psychosocial effects of the COVID-19 crisis by using social media data from 2020, finding that people’s mental health symptomatic and support expressions significantly increased during the COVID-19 period as compared to similar data from 2019. However, this effect gradually lessened over time, suggesting that people adapted to the circumstances and their “new normal.” Our linguistic analyses revealed that people expressed mental health concerns regarding personal and professional challenges, health care and precautionary measures, and pandemic-related awareness. This study shows the potential to provide insights to mental health care and stakeholders and policy makers in planning and implementing measures to mitigate mental health risks amid the health crisis.more » « less
An official website of the United States government

