The human-robot interaction (HRI) field has rec- ognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for suc- cessful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications.
more »
« less
Connecting the Dots of Social Robot Design From Interviews With Robot Creators
Despite promises about the near-term potential of social robots to share our daily lives, they remain unable to form autonomous, lasting, and engaging relationships with humans. Many companies are deploying social robots into the consumer and commercial market; however, both the companies and their products are relatively short lived for many reasons. For example, current social robots succeed in interacting with humans only within controlled environments, such as research labs, and for short time periods since longer interactions tend to provoke user disengagement. We interviewed 13 roboticists from robot manufacturing companies and research labs to delve deeper into the design process for social robots and unearth the many challenges robot creators face. Our research questions were: 1) What are the different design processes for creating social robots? 2) How are users involved in the design of social robots? 3) How are teams of robot creators constituted? Our qualitative investigation showed that varied design practices are applied when creating social robots but no consensus exists about an optimal or standard one. Results revealed that users have different degrees of involvement in the robot creation process, from no involvement to being a central part of robot development. Results also uncovered the need for multidisciplinary and international teams to work together to create robots. Drawing upon these insights, we identified implications for the field of Human-Robot Interaction that can shape the creation of best practices for social robot design.
more »
« less
- Award ID(s):
- 1734100
- PAR ID:
- 10386128
- Date Published:
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 9
- ISSN:
- 2296-9144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As robotic products become more integrated into daily life, there is a greater need to understand authentic and real-world human-robot interactions to inform product design. Across many domestic, educational, and public settings, robots interact with not only individuals and groups of users, but also families, including children, parents, relatives, and even pets. However, products developed to date and research in human-robot and child-robot interactions have focused on the interaction with their primary users, neglecting the complex and multifaceted interactions between family members and with the robot. There is a significant gap in knowledge, methods, and theories for how to design robots to support these interactions. To inform the design of robots that can support and enhance family life, this paper provides (1) a narrative review exemplifying the research gap and opportunities for family-robot interactions and (2) an actionable family-centered framework for research and practices in human-robot and child-robot interaction.more » « less
-
Teams of robots tasked with making critical decisions in competitive environments are at risk for being shepherded or misdirected to a location that is advantageous for a competing team. Our lab is working to understand how adversarial teams of robots can successfully move their competition to desired locations in part so that we can then devise practices to counter these strategies and help make team functioning more successful and secure. In this paper, preliminary research is presented that studies how a team of robots can be shepherded or misdirected to a disadvantageous location. We draw inspiration from herding practices as well as deceptive practices seen in higher-order primates and humans. We define behaviors for the target (mark) agents to be moved as well as members of the shepherding team (a pushing agent and pulling shills) and present simulation results showing how these behaviors move robots to a desired location. These behaviors were implemented and trialed on hardware platform. A discussion of ongoing research into understanding misdirection in multi-robot teams concludes this paper.more » « less
-
Humans are well-adept at navigating public spaces shared with others, where current autonomous mobile robots still struggle: while safely and efficiently reaching their goals, humans communicate their intentions and conform to unwritten social norms on a daily basis; conversely, robots become clumsy in those daily social scenarios, getting stuck in dense crowds, surprising nearby pedestrians, or even causing collisions. While recent research on robot learning has shown promises in data-driven social robot navigation, good-quality training data is still difficult to acquire through either trial and error or expert demonstrations. In this work, we propose to utilize the body of rich, widely available, social human navigation data in many natural human-inhabited public spaces for robots to learn similar, human-like, socially compliant navigation behaviors. To be specific, we design an open-source egocentric data collection sensor suite wearable by walking humans to provide multimodal robot perception data; we collect a large-scale (~100 km, 20 hours, 300 trials, 13 humans) dataset in a variety of public spaces which contain numerous natural social navigation interactions; we analyze our dataset, demonstrate its usability, and point out future research directions and use cases.11Website: https://cs.gmu.edu/-xiao/Research/MuSoHu/more » « less
-
null (Ed.)Robots are entering various domains of human societies, potentially unfolding more opportunities for people to perceive robots as social agents. We expect that having robots in proximity would create unique social learning situations where humans spontaneously observe and imitate robots’ behaviors. At times, these occurrences of humans’ imitating robot behaviors may result in a spread of unsafe or unethical behaviors among humans. For responsible robot designing, therefore, we argue that it is essential to understand physical and psychological triggers of social learning in robot design. Grounded in the existing literature of social learning and the uncanny valley theories, we discuss the human-likeness of robot appearance and affective responses associated with robot appearance as likely factors that either facilitate or deter social learning. We propose practical considerations for social learning and robot design.more » « less
An official website of the United States government

