skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry
Abstract. Organic nitrate (RONO2) formation in the atmosphere represents a sink of NOx(NOx = NO + NO2) and termination of the NOx/HOx(HOx = HO2 + OH) ozone formation and radical propagation cycles, can act as a NOx reservoirtransporting reactive nitrogen, and contributes to secondary organic aerosol formation. While some fraction of RONO2 is thought to reside in the particle phase, particle-phase organic nitrates (pRONO2) are infrequently measured and thus poorly understood. There is anincreasing prevalence of aerosol mass spectrometer (AMS) instruments, which have shown promise for determining the quantitative total organic nitratefunctional group contribution to aerosols. A simple approach that relies on the relative intensities of NO+ and NO2+ ions inthe AMS spectrum, the calibrated NOx+ ratio for NH4NO3, and the inferred ratio for pRONO2 hasbeen proposed as a way to apportion the total nitrate signal to NH4NO3 and pRONO2. This method is increasingly beingapplied to field and laboratory data. However, the methods applied have been largely inconsistent and poorly characterized, and, therefore, adetailed evaluation is timely. Here, we compile an extensive survey of NOx+ ratios measured for variouspRONO2 compounds and mixtures from multiple AMS instruments, groups, and laboratory and field measurements. All data and analysispresented here are for use with the standard AMS vaporizer. We show that, in the absence of pRONO2 standards, thepRONO2 NOx+ ratio can be estimated using a ratio referenced to the calibrated NH4NO3 ratio, aso-called “Ratio-of-Ratios” method (RoR = 2.75 ± 0.41). We systematically explore the basis for quantifyingpRONO2 (and NH4NO3) with the RoR method using ground and aircraft field measurements conducted over a largerange of conditions. The method is compared to another AMS method (positive matrix factorization, PMF) and other pRONO2 andrelated (e.g., total gas + particle RONO2) measurements, generally showing good agreement/correlation. A broad survey of ground andaircraft AMS measurements shows a pervasive trend of higher fractional contribution of pRONO2 to total nitrate with lower totalnitrate concentrations, which generally corresponds to shifts from urban-influenced to rural/remote regions. Compared to ground campaigns,observations from all aircraft campaigns showed substantially lower pRONO2 contributions at midranges of total nitrate(0.01–0.1 up to 2–5 µg m−3), suggesting that the balance of effects controlling NH4NO3 and pRONO2formation and lifetimes – such as higher humidity, lower temperatures, greater dilution, different sources, higher particle acidity, andpRONO2 hydrolysis (possibly accelerated by particle acidity) – favors lower pRONO2 contributions for thoseenvironments and altitudes sampled.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Page Range / eLocation ID:
459 to 483
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Smoke from wildfires is a significant source of air pollution, which can adversely impact air quality and ecosystems downwind. With the recently increasing intensity and severity of wildfires, the threat to air quality is expected to increase. Satellite-derived biomass burning emissions can fill in gaps in the absence of aircraft or ground-based measurement campaigns and can help improve the online calculation of biomass burning emissions as well as the biomass burning emissions inventories that feed air quality models. This study focuses on satellite-derived NOx emissions using the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI) NO2 dataset. Advancements and improvements to the satellite-based determination of forest fire NOx emissions are discussed, including information on plume height and effects of aerosol scattering and absorption on the satellite-retrieved vertical column densities. Two common top-down emission estimation methods, (1) an exponentially modified Gaussian (EMG) and (2) a flux method, are applied to synthetic data to determine the accuracy and the sensitivity to different parameters, including wind fields, satellite sampling, noise, lifetime, and plume spread. These tests show that emissions can be accurately estimated from single TROPOMI overpasses.The effect of smoke aerosols on TROPOMI NO2 columns (via air mass factors, AMFs) is estimated, and these satellite columns and emission estimates are compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America. Our results indicate that applying an explicit aerosol correction to the TROPOMI NO2 columns improves the agreement with the aircraft observations (by about 10 %–25 %). The aircraft- and satellite-derived emissions are in good agreement within the uncertainties. Both top-down emissions methods work well; however, the EMG method seems to output more consistent results and has better agreement with the aircraft-derived emissions. Assuming a Gaussian plume shape for various biomass burning plumes, we estimate an average NOx e-folding time of 2 ±1 h from TROPOMI observations. Based on chemistry transport model simulations and aircraft observations, the net emissions of NOx are 1.3 to 1.5 times greater than the satellite-derived NO2 emissions. A correction factor of 1.3 to 1.5 should thus be used to infer net NOx emissions from the satellite retrievals of NO2. 
    more » « less
  2. Abstract. Extensive airborne measurements of non-methane organic gases (NMOGs), methane, nitrogen oxides, reduced nitrogen species, and aerosol emissions from US wild and prescribed fires were conducted during the 2019 NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality campaign (FIREX-AQ). Here, we report the atmospheric enhancement ratios (ERs) and inferred emission factors (EFs) for compounds measured on board the NASA DC-8 research aircraft for nine wildfires and one prescribed fire, which encompass a range of vegetation types. We use photochemical proxies to identify young smoke and reduce the effects of chemical degradation on our emissions calculations. ERs and EFs calculated from FIREX-AQ observations agree within a factor of 2, with values reported from previous laboratory and field studies for more than 80 % of the carbon- and nitrogen-containing species. Wildfire emissions are parameterized based on correlations of the sum of NMOGs with reactive nitrogen oxides (NOy) to modified combustion efficiency (MCE) as well as other chemical signatures indicative of flaming/smoldering combustion, including carbon monoxide (CO), nitrogen dioxide (NO2), and black carbon aerosol. The sum of primary NMOG EFs correlates to MCE with an R2 of 0.68 and a slope of −296 ± 51 g kg−1, consistent with previous studies. The sum of the NMOG mixing ratios correlates well with CO with an R2 of 0.98 and a slope of 137 ± 4 ppbv of NMOGs per parts per million by volume (ppmv) of CO, demonstrating that primary NMOG emissions can be estimated from CO. Individual nitrogen-containing species correlate better with NO2, NOy, and black carbon than with CO. More than half of the NOy in fresh plumes is NO2 with an R2 of 0.95 and a ratio of NO2 to NOy of 0.55 ± 0.05 ppbv ppbv−1, highlighting that fast photochemistry had already occurred in the sampled fire plumes. The ratio of NOy to the sum of NMOGs follows trends observed in laboratory experiments and increases exponentially with MCE, due to increased emission of key nitrogen species and reduced emission of NMOGs at higher MCE during flaming combustion. These parameterizations will provide more accurate boundary conditions for modeling and satellite studies of fire plume chemistry and evolution to predict the downwind formation of secondary pollutants, including ozone and secondary organic aerosol.

    more » « less
  3. Abstract. Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57′E, 30°46′N; 4730ma.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was  ∼ 2.0µgm−3, with organics accounting for 68%, followed by sulfate (15%), black carbon (8%), ammonium (7%), and nitrate (2%). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (OC) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average OC ratio of 0.72), and an average OC was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated organic aerosol (OOA) factors: a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). The MO-OOA dominated during the pre-monsoon period, whereas LO-OOA dominated during monsoon. The sensitivity of air mass transport during pre-monsoon with synoptic process was also evaluated with a 3-D chemical transport model.

    more » « less
  4. null (Ed.)
    Abstract. The formation of inorganic nitrate is the main sink for nitrogenoxides (NOx = NO + NO2). Due to the importance of NOx forthe formation of tropospheric oxidants such as the hydroxyl radical (OH) andozone, understanding the mechanisms and rates of nitrate formation isparamount for our ability to predict the atmospheric lifetimes of mostreduced trace gases in the atmosphere. The oxygen isotopic composition ofnitrate (Δ17O(nitrate)) is determined by the relativeimportance of NOx sinks and thus can provide an observationalconstraint for NOx chemistry. Until recently, the ability to utilizeΔ17O(nitrate) observations for this purpose was hindered by ourlack of knowledge about the oxygen isotopic composition of ozone (Δ17O(O3)). Recent and spatially widespread observations of Δ17O(O3) motivate an updated comparison of modeled andobserved Δ17O(nitrate) and a reassessment of modeled nitrateformation pathways. Model updates based on recent laboratory studies ofheterogeneous reactions render dinitrogen pentoxide (N2O5)hydrolysis as important as NO2 + OH (both 41 %) for globalinorganic nitrate production near the surface (below 1 km altitude). Allother nitrate production mechanisms individually represent less than 6 %of global nitrate production near the surface but can be dominant locally.Updated reaction rates for aerosol uptake of NO2 result in significantreduction of nitrate and nitrous acid (HONO) formed through this pathway inthe model and render NO2 hydrolysis a negligible pathway for nitrateformation globally. Although photolysis of aerosol nitrate may haveimplications for NOx, HONO, and oxidant abundances, it does notsignificantly impact the relative importance of nitrate formation pathways.Modeled Δ17O(nitrate) (28.6±4.5 ‰)compares well with the average of a global compilation of observations (27.6±5.0 ‰) when assuming Δ17O(O3) = 26 ‰, giving confidence in the model'srepresentation of the relative importance of ozone versus HOx (= OH + HO2 + RO2) in NOx cycling and nitrate formation on theglobal scale. 
    more » « less
  5. Abstract. We present a novel photolytic source of gas-phase NO3 suitable for use in atmospheric chemistry studies that has several advantages over traditional sources that utilize NO2 + O3 reactions and/or thermal dissociation of dinitrogen pentoxide (N2O5). The method generates NO3 via irradiation of aerated aqueous solutions of ceric ammonium nitrate (CAN, (NH4)2Ce(NO3)6) and nitric acid (HNO3) or sodium nitrate (NaNO3). We present experimental and model characterization of the NO3 formation potential of irradiated CAN / HNO3 and CAN / NaNO3 mixtures containing [CAN] = 10−3 to 1.0 M, [HNO3] = 1.0 to 6.0 M, [NaNO3] = 1.0 to 4.8 M, photon fluxes (I) ranging from 6.9 × 1014 to 1.0 × 1016 photons cm−2 s−1, and irradiation wavelengths ranging from 254 to 421 nm. NO3 mixing ratios ranging from parts per billion to parts per million by volume were achieved using this method. At the CAN solubility limit, maximum [NO3] was achieved using [HNO3] ≈ 3.0 to 6.0 M and UVA radiation (λmax⁡ = 369 nm) in CAN / HNO3 mixtures or [NaNO3] ≥ 1.0 M and UVC radiation (λmax⁡ = 254 nm) in CAN / NaNO3 mixtures. Other reactive nitrogen (NO2, N2O4, N2O5, N2O6, HNO2, HNO3, HNO4) and reactive oxygen (HO2, H2O2) species obtained from the irradiation of ceric nitrate mixtures were measured using a NOx analyzer and an iodide-adduct high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS). To assess the applicability of the method for studies of NO3-initiated oxidative aging processes, we generated and measured the chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) from the β-pinene + NO3 reaction using a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to the HR-ToF-CIMS.

    more » « less