skip to main content

Search for: All records

Award ID contains: 1822664

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2023
  2. Free, publicly-accessible full text available June 7, 2023
  3. Abstract. Organic nitrate (RONO2) formation in the atmosphere represents a sink of NOx(NOx = NO + NO2) and termination of the NOx/HOx(HOx = HO2 + OH) ozone formation and radical propagation cycles, can act as a NOx reservoirtransporting reactive nitrogen, and contributes to secondary organic aerosol formation. While some fraction of RONO2 is thought to reside in the particle phase, particle-phase organic nitrates (pRONO2) are infrequently measured and thus poorly understood. There is anincreasing prevalence of aerosol mass spectrometer (AMS) instruments, which have shown promise for determining the quantitative total organic nitratefunctional group contribution to aerosols. A simple approach that relies on the relative intensities of NO+ and NO2+ ions inthe AMS spectrum, the calibrated NOx+ ratio for NH4NO3, and the inferred ratio for pRONO2 hasbeen proposed as a way to apportion the total nitrate signal to NH4NO3 and pRONO2. This method is increasingly beingapplied to field and laboratory data. However, the methods applied have been largely inconsistent and poorly characterized, and, therefore, adetailed evaluation is timely. Here, we compile an extensive survey of NOx+ ratios measured for variouspRONO2 compounds and mixtures from multiple AMS instruments, groups, and laboratory and field measurements. All data and analysispresented here are for use with the standard AMS vaporizer. We show that,more »in the absence of pRONO2 standards, thepRONO2 NOx+ ratio can be estimated using a ratio referenced to the calibrated NH4NO3 ratio, aso-called “Ratio-of-Ratios” method (RoR = 2.75 ± 0.41). We systematically explore the basis for quantifyingpRONO2 (and NH4NO3) with the RoR method using ground and aircraft field measurements conducted over a largerange of conditions. The method is compared to another AMS method (positive matrix factorization, PMF) and other pRONO2 andrelated (e.g., total gas + particle RONO2) measurements, generally showing good agreement/correlation. A broad survey of ground andaircraft AMS measurements shows a pervasive trend of higher fractional contribution of pRONO2 to total nitrate with lower totalnitrate concentrations, which generally corresponds to shifts from urban-influenced to rural/remote regions. Compared to ground campaigns,observations from all aircraft campaigns showed substantially lower pRONO2 contributions at midranges of total nitrate(0.01–0.1 up to 2–5 µg m−3), suggesting that the balance of effects controlling NH4NO3 and pRONO2formation and lifetimes – such as higher humidity, lower temperatures, greater dilution, different sources, higher particle acidity, andpRONO2 hydrolysis (possibly accelerated by particle acidity) – favors lower pRONO2 contributions for thoseenvironments and altitudes sampled.« less
  4. Abstract. Fires emit sufficient sulfur to affect local and regional airquality and climate. This study analyzes SO2 emission factors andvariability in smoke plumes from US wildfires and agricultural fires, as well as theirrelationship to sulfate and hydroxymethanesulfonate (HMS) formation.Observed SO2 emission factors for various fuel types show goodagreement with the latest reviews of biomass burning emission factors,producing an emission factor range of 0.47–1.2 g SO2 kg−1 C.These emission factors vary with geographic location in a way that suggeststhat deposition of coal burning emissions and application ofsulfur-containing fertilizers likely play a role in the larger observedvalues, which are primarily associated with agricultural burning. A 0-D boxmodel generally reproduces the observed trends of SO2 and total sulfate(inorganic + organic) in aging wildfire plumes. In many cases, modeled HMSis consistent with the observed organosulfur concentrations. However, acomparison of observed organosulfur and modeled HMS suggests that multipleorganosulfur compounds are likely responsible for the observations but thatthe chemistry of these compounds yields similar production and loss rates asthat of HMS, resulting in good agreement with the modeled results. Weprovide suggestions for constraining the organosulfur compounds observedduring these flights, and we show that the chemistry of HMS can alloworganosulfur to act as an S(IV) reservoir under conditions of pH > 6 andmore »liquid water content>10−7 g sm−3. This canfacilitate long-range transport of sulfur emissions, resulting in increasedSO2 and eventually sulfate in transported smoke.« less
  5. Understanding of the fundamental chemical and physical processes that lead to the formation and evolution of secondary organic aerosol (SOA) in the atmosphere has been rapidly advancing over the past decades. Many of these advancements have been achieved through laboratory studies, particularly SOA studies conducted in environmental chambers. Results from such studies are used to develop simplified representations of SOA formation in regional- and global-scale air quality models. Although it is known that there are limitations in the extent to which laboratory experiments can represent the ambient atmosphere, there have been no systematic surveys of what defines atmospheric relevance in the context of SOA formation. In this work, GEOS-Chem version 12.3 was used to quantitatively describe atmospherically relevant ranges of chemical and meteorological parameters critical for predictions of the mass, composition, and physical properties of SOA. For some parameters, atmospherically relevant ranges are generally well represented in laboratory studies. However for other parameters, significant gaps exist between atmospherically relevant ranges and typical laboratory conditions. For example, cold winter (less than 0 °C) and humid (greater than 70% RH) conditions are relatively common on the Earth’s surface but are poorly represented in published chamber data. Furthermore, the overlap in relative humiditymore »and organic aerosol mass between chamber studies and ambient conditions is almost nonexistent. For parameters with significant gaps, extended laboratory studies and/or mechanistic models are needed to bridge these gaps.« less
  6. Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenicemissions of organic compounds, constitutes a substantial fraction of themass of submicron aerosol in populated areas around the world andcontributes to poor air quality and premature mortality. However, theprecursor sources of ASOA are poorly understood, and there are largeuncertainties in the health benefits that might accrue from reducinganthropogenic organic emissions. We show that the production of ASOA in 11urban areas on three continents is strongly correlated with the reactivityof specific anthropogenic volatile organic compounds. The differences inASOA production across different cities can be explained by differences inthe emissions of aromatics and intermediate- and semi-volatile organiccompounds, indicating the importance of controlling these ASOA precursors.With an improved model representation of ASOA driven by the observations,we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which isover an order of magnitude higher than prior studies. A sensitivity casewith a more recently proposed model for attributing mortality to PM2.5(the Global Exposure Mortality Model) results in up to 900 000 deaths. Alimitation of this study is the extrapolation from cities with detailedstudies and regions where detailed emission inventories are available toother regions where uncertainties in emissions are larger. In addition tofurther development of institutional air quality management infrastructure,comprehensive airmore »quality campaigns in the countries in South and CentralAmerica, Africa, South Asia, and the Middle East are needed for furtherprogress in this area.« less