Abstract. Smoke from wildfires is a significant source of air pollution, which can adversely impact air quality and ecosystems downwind. With the recently increasing intensity and severity of wildfires, the threat to air quality is expected to increase. Satellite-derived biomass burning emissions can fill in gaps in the absence of aircraft or ground-based measurement campaigns and can help improve the online calculation of biomass burning emissions as well as the biomass burning emissions inventories that feed air quality models. This study focuses on satellite-derived NOx emissions using the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI) NO2 dataset. Advancements and improvements to the satellite-based determination of forest fire NOx emissions are discussed, including information on plume height and effects of aerosol scattering and absorption on the satellite-retrieved vertical column densities. Two common top-down emission estimation methods, (1) an exponentially modified Gaussian (EMG) and (2) a flux method, are applied to synthetic data to determine the accuracy and the sensitivity to different parameters, including wind fields, satellite sampling, noise, lifetime, and plume spread. These tests show that emissions can be accurately estimated from single TROPOMI overpasses.The effect of smoke aerosols on TROPOMI NO2 columns (via air mass factors, AMFs) is estimated, and these satellitemore »
Emission factors and evolution of SO 2 measured from biomass burning in wildfires and agricultural fires
Abstract. Fires emit sufficient sulfur to affect local and regional airquality and climate. This study analyzes SO2 emission factors andvariability in smoke plumes from US wildfires and agricultural fires, as well as theirrelationship to sulfate and hydroxymethanesulfonate (HMS) formation.Observed SO2 emission factors for various fuel types show goodagreement with the latest reviews of biomass burning emission factors,producing an emission factor range of 0.47–1.2 g SO2 kg−1 C.These emission factors vary with geographic location in a way that suggeststhat deposition of coal burning emissions and application ofsulfur-containing fertilizers likely play a role in the larger observedvalues, which are primarily associated with agricultural burning. A 0-D boxmodel generally reproduces the observed trends of SO2 and total sulfate(inorganic + organic) in aging wildfire plumes. In many cases, modeled HMSis consistent with the observed organosulfur concentrations. However, acomparison of observed organosulfur and modeled HMS suggests that multipleorganosulfur compounds are likely responsible for the observations but thatthe chemistry of these compounds yields similar production and loss rates asthat of HMS, resulting in good agreement with the modeled results. Weprovide suggestions for constraining the organosulfur compounds observedduring these flights, and we show that the chemistry of HMS can alloworganosulfur to act as an S(IV) reservoir under conditions of pH > 6 and more »
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1822664
- Publication Date:
- NSF-PAR ID:
- 10386150
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 22
- Issue:
- 23
- Page Range or eLocation-ID:
- 15603 to 15620
- ISSN:
- 1680-7324
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wildfires are an important atmospheric source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochemical processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chemistry, thermodynamic properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochemical production of SOA are likely to explain the observed evolution in OA mass with physical age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chemical transformation within the first hour after emission is driven bymore »
-
Abstract. Wildfire smoke is one of the most significant concerns ofhuman and environmental health, associated with its substantial impacts onair quality, weather, and climate. However, biomass burning emissions andsmoke remain among the largest sources of uncertainties in air qualityforecasts. In this study, we evaluate the smoke emissions and plumeforecasts from 12 state-of-the-art air quality forecasting systemsduring the Williams Flats fire in Washington State, US, August 2019, whichwas intensively observed during the Fire Influence on Regional to GlobalEnvironments and Air Quality (FIREX-AQ) field campaign. Model forecasts withlead times within 1 d are intercompared under the same framework basedon observations from multiple platforms to reveal their performanceregarding fire emissions, aerosol optical depth (AOD), surface PM2.5,plume injection, and surface PM2.5 to AOD ratio. The comparison ofsmoke organic carbon (OC) emissions suggests a large range of daily totalsamong the models, with a factor of 20 to 50. Limited representations of thediurnal patterns and day-to-day variations of emissions highlight the needto incorporate new methodologies to predict the temporal evolution andreduce uncertainty of smoke emission estimates. The evaluation of smoke AOD(sAOD) forecasts suggests overall underpredictions in both the magnitude andsmoke plume area for nearly all models, although the high-resolution modelshave a better representation of the fine-scale structures of smoke plumes.Themore »
-
Abstract. Biomass burning is a major source of trace gases andaerosols that can ultimately impact health, air quality, and climate.Global and regional-scale three-dimensional Eulerian chemical transportmodels (CTMs) use estimates of the primary emissions from fires and canunphysically mix them across large-scale grid boxes, leading to incorrectestimates of the impact of biomass burning events. On the other hand,plume-scale process models allow for explicit simulation and examination ofthe chemical and physical transformations of trace gases and aerosols withinbiomass burning smoke plumes, and they may be used to developparameterizations of this aging process for coarser grid-scale models. Herewe describe the coupled SAM-ASP plume-scale process model, which consists ofcoupling the large-eddy simulation model, the System for AtmosphericModelling (SAM), with the detailed gas and aerosol chemistry model, theAerosol Simulation Program (ASP). We find that the SAM-ASP version 1.0 modelis able to correctly simulate the dilution of CO in a California chaparralsmoke plume, as well as the chemical loss of NOx, HONO, and NH3within the plume, the formation of PAN and O3, the loss of OA, and thechange in the size distribution of aerosols as compared to measurements andprevious single-box model results. The newly coupled model is able tocapture the cross-plume vertical and horizontal concentration gradientsmore »
-
Abstract. Forest fires are major contributors of reactive gas- and particle-phaseorganic compounds to the atmosphere. We used offline high-resolution tandemmass spectrometry to perform a molecular-level speciation of gas- andparticle-phase compounds sampled via aircraft from an evolving boreal forestfire smoke plume in Saskatchewan, Canada. We observed diversemultifunctional compounds containing oxygen, nitrogen, and sulfur (CHONS),whose structures, formation, and impacts are understudied. Thedilution-corrected absolute ion abundance of particle-phase CHONS compoundsincreased with plume age by a factor of 6.4 over the first 4 h ofdownwind transport, and their relative contribution to the observedfunctionalized organic aerosol (OA) mixture increased from 19 % to 40 %.The dilution-corrected absolute ion abundance of particle-phase compoundswith sulfide functional groups increased by a factor of 13 with plume age,and their relative contribution to observed OA increased from 4 % to40 %. Sulfides were present in up to 75 % of CHONS compounds and theincreases in sulfides were accompanied by increases in ring-bound nitrogen;both increased together with CHONS prevalence. A complex mixture ofintermediate- and semi-volatile gas-phase organic sulfur species wasobserved in emissions from the fire and depleted downwind, representingpotential precursors to particle-phase CHONS compounds. These resultsdemonstrate CHONS formation from nitrogen- and oxygen-containing biomass burningemissions in the presence of reduced sulfur species. In addition, theyhighlight chemical pathways thatmore »