skip to main content


Title: Quantifying Real-Time Sample Temperature Under the Gas Environment in the Transmission Electron Microscope Using a Novel MEMS Heater
Abstract Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability ( H )”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.  more » « less
Award ID(s):
1905647
NSF-PAR ID:
10386173
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Microscopy and Microanalysis
Volume:
27
Issue:
4
ISSN:
1431-9276
Page Range / eLocation ID:
758 to 766
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reactive flash sintering has been demonstrated as a method to rapidly densify and synthesize ceramic materials, but determining the extent of chemical reactions can be complex since the maximum temperature reached by the sample may be brief in time. The black body radiation (BBR) model has been shown to accurately predict the sample temperature during the steady state of flash (stage III). This work demonstrates situations where the BBR model alone does not accurately predict when a phase transformation will occur. We examine the model reactions of CuO reduction to Cu2O during stage II and Mn2O3reduction to Mn3O4in stage III. In CuO, highly resistive samples result in initially localized current flow, a stochastic process resulting in inhomogeneous heating and error in the BBR model during stage II. CuO reduction does not occur in constant heating rate experiments with 6.25 V/mm fields, even though the sample temperature momentarily exceeds the phase transformation temperature. Increased furnace heating to 950°C before application of a field is required to drive the transition. In Mn2O3, the calculated sample temperature of the gauge is less than the transformation temperature, but localized heating at the contact will exceed the transformation temperature, causing the transformation to propagate away from the electrode during stage III. This work demonstrates two forms of inhomogeneity (local, stochastic current flow, and local contact resistance) that result in a complex thermal profile of the sample. This profile should be interrogated to understand reaction kinetics, and can be beneficial when engineered.

     
    more » « less
  2. Knowledge of the kinetic behavior of He in apatite and other U- and Th-bearing minerals comes largely from detailed step-heating experiments, yet such experiments are time consuming and are rarely performed during routine thermochronological studies using the U-Th/He method. We propose a new analytical method for measuring both the bulk 4He abundance and the kinetics of He release in apatite. Using this method He is extracted from samples by continuous heating using a ramped temperature schedule under static vacuum conditions, and the evolved He is measured periodically as it accumulates in the extraction system. Continuous ramped heating (CRH) experiments can be conducted using instrumentation available in most noble-gas ther- mochronology labs but require particular attention to temperature control, measurement linearity and dynamic range, and suppression of active gases co-evolved with He. CRH experiments require little more time than conventional single-step heating measurements but yield a detailed record of He release not provided by con- ventional methods. Kinetic parameters for He diffusion in Durango apatite derived from continuous heating data agree well with those obtained from published step-heating studies. The continuous record of He release ob- tained from CRH experiments also provides important information about the siting of He and the presence of multiple He components in apatite, some of which may be responsible for anomalous U-Th/He ages and high age dispersion. As such the CRH method shows promise as a useful sample screening tool for apatite U-Th/He thermochronology. 
    more » « less
  3. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less
  4. Abstract

    The environmental conical nozzle levitator (E‐CNL) with dual‐wavelength lasers is an extreme environment materials characterization system that was designed to investigate ultra‐high‐temperature materials: refractory metals, oxides, carbides, and borides above 3000 K in a controlled atmosphere. This article details the characterizations using this system to establish its high‐temperature capabilities and to outline ongoing work on materials under extreme conditions. The system has been used to measure the melting point of several oxide materials (TiO2, Tm = 2091 ± 3 K; Al2O3, Tm = 2310 3 K; ZrO2, Tm = 2984 31 K; and HfO2, Tm = 3199 ± 45 K) and several air‐sensitive refractory metals (Ni, Tm = 1740 K; Ti, Tm = 1983 K; Nb, Tm = 2701 K; and Ta, Tm = 3368 K—note: mean ± standard deviation) during levitation which matched literature values within 0.17–2.43 % demonstrating high accuracy and precision. This containerless measurement approach is critical for probing properties without container‐derived contamination, and dual‐wavelength laser heating is essential to heat both relatively poor electrical conductors (some refractory metals and carbides) and insulators (oxides). The highest temperature achieved utilizing both lasers in these experiments was ∼4250 ± 34 K on a 76.6 mg, molten HfO2sample using a normal spectral emissivity of 0.91. Stable levitation was demonstrated on spherical samples (yttria‐stabilized zirconia) while adjusting levitation gas composition from pure oxygen to pure argon, verifying atmospheric control up to 3173 K on solid or molten samples. These successes demonstrate the viability of in situ high‐temperature environmentally controlled studies potentially up to 4000 K on all classes of ultra‐high‐temperature materials in one system. These measurements highlight the E‐CNL system will be essential for the development of next‐generation ultra‐high‐temperature materials for hypersonic platforms, nuclear fission and fusion, and space exploration.

     
    more » « less
  5. ABSTRACT

    We study the properties of cosmic-ray (CR) driven galactic winds from the warm interstellar medium using idealized spherically symmetric time-dependent simulations. The key ingredients in the model are radiative cooling and CR-streaming-mediated heating of the gas. Cooling and CR heating balance near the base of the wind, but this equilibrium is thermally unstable, leading to a multiphase wind with large fluctuations in density and temperature. In most of our simulations, the heating eventually overwhelms cooling, leading to a rapid increase in temperature and a thermally driven wind; the exception to this is in galaxies with the shallowest potentials, which produce nearly isothermal $T \approx 10^4\,$ K winds driven by CR pressure. Many of the time-averaged wind solutions found here have a remarkable critical point structure, with two critical points. Scaled to real galaxies, we find mass outflow rates $\dot{M}$ somewhat larger than the observed star-formation rate in low-mass galaxies, and an approximately ‘energy-like’ scaling $\dot{M} \propto v_{\rm esc}^{-2}$. The winds accelerate slowly and reach asymptotic wind speeds of only ∼0.4vesc. The total wind power is $\sim 1~{{\ \rm per\ cent}}$ of the power from supernovae, suggesting inefficient preventive CR feedback for the physical conditions modelled here. We predict significant spatially extended emission and absorption lines from 104–105.5 K gas; this may correspond to extraplanar diffuse ionized gas seen in star-forming galaxies.

     
    more » « less