IntroductionThe medical and recreational use of cannabis has increased in the United States. Its chronic use can have detrimental effects on the neurobiology of the brain—effects that are age-dependent. This was an exploratory study looking at the effects of chronically inhaled vaporized cannabis on brain structure in adult female mice. MethodsAdult mice were exposed daily to vaporized cannabis (10.3% THC and 0.05% CBD) or placebo for 21 days. Following cessation of treatment mice were examined for changes in brain structure using voxel-based morphometry and diffusion weighted imaging MRI. Data from each imaging modality were registered to a 3D mouse MRI atlas with 139 brain areas. ResultsMice showed volumetric changes in the forebrain particularly the prefrontal cortex, accumbens, ventral pallidum, and limbic cortex. Many of these same brain areas showed changes in water diffusivity suggesting alterations in gray matter microarchitecture. DiscussionThese data are consistent with much of the clinical findings on cannabis use disorder. The sensitivity of the dopaminergic system to the daily exposure of vaporized cannabis raises concerns for abuse liability in drug naïve adult females that initiate chronic cannabis use.
more »
« less
Changes in striatal dopamine release, sleep, and behavior during spontaneous Δ-9-tetrahydrocannabinol abstinence in male and female mice
Abstract Withdrawal symptoms are observed upon cessation of cannabis use in humans. Although animal studies have examined withdrawal symptoms following exposure to delta-9-tetrahydrocannabinol (THC), difficulties in obtaining objective measures of spontaneous withdrawal using paradigms that mimic cessation of use in humans have slowed research. The neuromodulator dopamine (DA) is affected by chronic THC treatment and plays a role in many behaviors related to human THC withdrawal symptoms. These symptoms include sleep disturbances that often drive relapse, and emotional behaviors like irritability and anhedonia. We examined THC withdrawal-induced changes in striatal DA release and the extent to which sleep disruption and behavioral maladaptation manifest during abstinence in a mouse model of chronic THC exposure. Using a THC treatment regimen known to produce tolerance, we measured electrically elicited DA release in acute brain slices from different striatal subregions during early and late THC abstinence. Long-term polysomnographic recordings from mice were used to assess vigilance state and sleep architecture before, during, and after THC treatment. We additionally assessed how behaviors that model human withdrawal symptoms are altered by chronic THC treatment in early and late abstinence. We detected altered striatal DA release, sleep disturbances that mimic clinical observations, and behavioral maladaptation in mice following tolerance to THC. Altered striatal DA release, sleep, and affect-related behaviors associated with spontaneous THC abstinence were more consistently observed in male mice. These findings provide a foundation for preclinical study of directly translatable non-precipitated THC withdrawal symptoms and the neural mechanisms that affect them.
more »
« less
- Award ID(s):
- 1633213
- PAR ID:
- 10386226
- Date Published:
- Journal Name:
- Neuropsychopharmacology
- Volume:
- 47
- Issue:
- 8
- ISSN:
- 0893-133X
- Page Range / eLocation ID:
- 1537 to 1549
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pain is known to disrupt sleep patterns, and disturbances in sleep can further worsen pain symptoms. Sleep spindles occur during slow wave sleep and have established effects on sensory and affective processing in mammals. A number of chronic neuropsychiatric conditions, meanwhile, are known to alter sleep spindle density. The effect of persistent pain on sleep spindle waves, however, remains unknown, and studies of sleep spindles are challenging due to long period of monitoring and data analysis. Utilizing automated sleep spindle detection algorithms built on deep learning, we can monitor the effect of pain states on sleep spindle activity. In this study, we show that in a chronic pain model in rodents, there is a significant decrease in sleep spindle activity compared to controls. Meanwhile, methods to restore sleep spindles are associated with decreased pain symptoms. These results suggest that sleep spindle density correlates with chronic pain and may be both a potential biomarker for chronic pain and a target for neuromodulation therapy.more » « less
-
Abstract Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.more » « less
-
While the neural commonalities as subjects perform similar task-related behaviors has been previously examined, it is very difficult to ascertain the neural commonalities for spontaneous, task-unrelated behaviors such as grooming. As our ability to record high-dimensional naturalistic behavioral and corresponding neural data increases, we can now try to understand the relationship between different subjects performing spontaneous behaviors that occur rarely in time. Here, we first apply novel machine learning techniques to behavioral video data from four head-fixed mice as they perform a self-initiated decision-making task while their neural activity is recorded using widefield calcium imaging. Across mice, we automatically identify spontaneous behaviors such as grooming and task-related behaviors such as lever pulls. Next, we explore the commonalities between the neural activity of different mice as they perform these tasks by transforming the neural activity into a common subspace, using Multidimensional Canonical Correlation Analysis (MCCA). Finally, we compare the commonalities across different trials in the same subject to those across subjects for different types of behaviors, and find that many recorded brain regions display high levels of correlation for spontaneous behaviors such as grooming. The combined behavioral and neural analysis methods in this paper provide an understanding of how similarly different animals perform innate behaviors.more » « less
-
Background: The Transient Receptor Potential Melastatin 8 (TRPM8) is a cold/pain-sensitive Ca2+ channel. Testosterone is a high-affinity agonist for TRPM8, and TRPM8 -/- male mice exhibit disrupted sexual behavior: indiscriminate approach, increased mounting, and delayed satiety, possibly due to decreased ventral tegmental area dopamine (DA) neuron activity. DA plays a critical role in motivated behaviors, including behavioral activation, detection of reward-relevant stimuli, and reinforcement learning. Hypothesis: It is hypothesized that TRPM8 KO mice will exhibit disruptions across a range of motivationally-relevant behaviors, including spontaneous locomotor activation, detection of novel stimuli, sucrose preference, and sensitivity to the psychomotor stimulant amphetamine. Methods: Adult mice (Jackson Laboratory) were individually housed and locomotor activity was assessed for 48 hours. To assess detection of novel stimuli, a novel object recognition task was performed. Mice were habituated to two identical objects for two hours. A novel object was introduced and interaction with the novel vs familiar object was recorded. Sucrose (0.1%) preference was assessed using a two-bottle choice procedure. Tests for amphetamine sensitization (1.0 mg/kg i.p.) are in progress. Results: Female mice were more active compared to male mice (F (1,26) = 7.14, p < 0.05). Time course analysis of the nocturnal activity of males revealed a statistically significant decrease (F (1,12) = 23.41, p < 0.001) in activity among TRPM8 -/- compared to wildtype mice. In contrast, the TRPM8 deletion had no effect on the activity of female mice (F (1,12) = 0.32, n.s.). Preliminary analysis of the novel object recognition task revealed a trend towards increased exploration of the novel object and decreased time with the familiar object among male TRPM8 -/- mice compared to wildtype (Cohen’s d > 0.58). Finally, male TRPM8 -/- mice exhibited a robust preference for sucrose compared to wildtype mice. Additional data collection is in progress. Conclusion: TRPM8-/- mice were less active during the active phase of the day/night cycle compared to wildtype mice. However, TRPM8-/- mice exhibited increased interest in a novel object and a robust preference for sucrose, indicating increased sensitivity to motivationally-relevant stimuli. These behavioral data suggest that TRPM8 -/- mice are likely to exhibit decreased basal DA levels in reward-relevant brain areas, but that motivationally relevant stimuli likely elicit robust increases in DA.more » « less