Abstract In dynamic environments, animals must closely monitor the effects of their actions to inform switches in behavioral strategy. Anterior cingulate cortex (ACC) neurons track decision outcomes in these environments. Yet, it remains unclear whether ACC neurons similarly monitor behavioral history in static environments and, if so, whether these signals are distinct from movement representations. We recorded large-scale ACC activity in freely moving mice making visual evidence-accumulation decisions. Many ACC neurons exhibited nonlinear mixed selectivity for previous choices and outcomes (trial history) and were modulated by movements. Trial history could be stably decoded from population activity and accounted for a separable component of neural activity than posture and movements. Trial history encoding was conserved across different subjects and was unaffected by fluctuating behavioral biases. These findings demonstrate that trial history monitoring in ACC is implemented in a conserved population code that is independent of the volatility of subjects’ task environment.
more »
« less
Neural Correlations Across Mice During Spontaneous and Task-Related Behaviors
While the neural commonalities as subjects perform similar task-related behaviors has been previously examined, it is very difficult to ascertain the neural commonalities for spontaneous, task-unrelated behaviors such as grooming. As our ability to record high-dimensional naturalistic behavioral and corresponding neural data increases, we can now try to understand the relationship between different subjects performing spontaneous behaviors that occur rarely in time. Here, we first apply novel machine learning techniques to behavioral video data from four head-fixed mice as they perform a self-initiated decision-making task while their neural activity is recorded using widefield calcium imaging. Across mice, we automatically identify spontaneous behaviors such as grooming and task-related behaviors such as lever pulls. Next, we explore the commonalities between the neural activity of different mice as they perform these tasks by transforming the neural activity into a common subspace, using Multidimensional Canonical Correlation Analysis (MCCA). Finally, we compare the commonalities across different trials in the same subject to those across subjects for different types of behaviors, and find that many recorded brain regions display high levels of correlation for spontaneous behaviors such as grooming. The combined behavioral and neural analysis methods in this paper provide an understanding of how similarly different animals perform innate behaviors.
more »
« less
- Award ID(s):
- 2219876
- PAR ID:
- 10466594
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 1948-3554
- ISBN:
- 978-1-6654-6292-1
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Location:
- Baltimore, MD, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hennig, Matthias Helge (Ed.)The amygdala responds to a large variety of socially and emotionally salient environmental and interoceptive stimuli. The context in which these stimuli occur determines their social and emotional significance. In canonical neurophysiological studies, the fast-paced succession of stimuli and events induce phasic changes in neural activity. During inter-trial intervals, neural activity is expected to return to a stable and featureless level of spontaneous activity, often called baseline. In previous studies we found that context, such as the presence of a social partner, induces brain states that can transcend the fast-paced succession of stimuli and can be recovered from the spontaneous, inter-trial firing rate of neurons. Indeed, the spontaneous firing rates of neurons in the amygdala are different during blocks of gentle grooming touches delivered by a trusted social partner, and during blocks of non-social airflow stimuli delivered by a computer-controlled air valve. Here, we examine local field potentials (LFPs) recorded during periods of spontaneous activity to determine whether information about context can be extracted from these signals. We found that information about social vs. non-social context is present in the local field potential during periods of spontaneous activity between the application of grooming and airflow stimuli, as machine learning techniques can reliably decode context from spectrograms of spontaneous LFPs. No significant differences were detected between the nuclei of the amygdala that receive direct or indirect inputs from areas of the prefrontal cortex known to coordinate flexible, context-dependent behaviors. The lack of nuclear specificity suggests that context-related synaptic inputs arise from a shared source, possibly interoceptive inputs, that signal the physiological state of the body during social and non-social blocks of tactile stimulation.more » « less
-
Background: The Transient Receptor Potential Melastatin 8 (TRPM8) is a cold/pain-sensitive Ca2+ channel. Testosterone is a high-affinity agonist for TRPM8, and TRPM8 -/- male mice exhibit disrupted sexual behavior: indiscriminate approach, increased mounting, and delayed satiety, possibly due to decreased ventral tegmental area dopamine (DA) neuron activity. DA plays a critical role in motivated behaviors, including behavioral activation, detection of reward-relevant stimuli, and reinforcement learning. Hypothesis: It is hypothesized that TRPM8 KO mice will exhibit disruptions across a range of motivationally-relevant behaviors, including spontaneous locomotor activation, detection of novel stimuli, sucrose preference, and sensitivity to the psychomotor stimulant amphetamine. Methods: Adult mice (Jackson Laboratory) were individually housed and locomotor activity was assessed for 48 hours. To assess detection of novel stimuli, a novel object recognition task was performed. Mice were habituated to two identical objects for two hours. A novel object was introduced and interaction with the novel vs familiar object was recorded. Sucrose (0.1%) preference was assessed using a two-bottle choice procedure. Tests for amphetamine sensitization (1.0 mg/kg i.p.) are in progress. Results: Female mice were more active compared to male mice (F (1,26) = 7.14, p < 0.05). Time course analysis of the nocturnal activity of males revealed a statistically significant decrease (F (1,12) = 23.41, p < 0.001) in activity among TRPM8 -/- compared to wildtype mice. In contrast, the TRPM8 deletion had no effect on the activity of female mice (F (1,12) = 0.32, n.s.). Preliminary analysis of the novel object recognition task revealed a trend towards increased exploration of the novel object and decreased time with the familiar object among male TRPM8 -/- mice compared to wildtype (Cohen’s d > 0.58). Finally, male TRPM8 -/- mice exhibited a robust preference for sucrose compared to wildtype mice. Additional data collection is in progress. Conclusion: TRPM8-/- mice were less active during the active phase of the day/night cycle compared to wildtype mice. However, TRPM8-/- mice exhibited increased interest in a novel object and a robust preference for sucrose, indicating increased sensitivity to motivationally-relevant stimuli. These behavioral data suggest that TRPM8 -/- mice are likely to exhibit decreased basal DA levels in reward-relevant brain areas, but that motivationally relevant stimuli likely elicit robust increases in DA.more » « less
-
Testosterone exerts high affinity for the Transient Receptor Potential Melastatin 8 (TRPM8) Ca2+ channel. TRPM8 -/- male mice exhibit disrupted sexual behavior (e.g., indiscriminate approach, delayed satiety), possibly due to decreased ventral tegmental area dopamine neuron activity. It is hypothesized that TRPM8 null mutant mice (Jackson Laboratories) will exhibit disruptions across a range of motivationally-relevant behaviors, including spontaneous locomotor activation, detection of novel stimuli, sucrose preference, and sensitivity to the psychomotor stimulant amphetamine. Initial findings indicate that male TRPM8 mutant mice (n=6) exhibit decreased nocturnal locomotor activity (F(1,12)=23.41, p<0.001), increased behavioral anxiety in the light/dark task (t(10)=2.44, p<0.05; d=1.4), and behavioral despair in the forced swim task (t(10)=3.70, p<0.005; d=2.1). In contrast, these mice tended to prefer a low concentration (0.1%) of sucrose compared to wildtype males (n=6; t(10)=1.35, p=0.09; d=0.83). Tests for sensitivity to amphetamine are in progress. These data suggest a pivotal role for TRPM8 in motivated behavior.more » « less
-
A common way to advance our understanding of brain processing is to decode behavior from recorded neural signals. In order to study the neural correlates of learning a task, we would like to decode behavior across the entire timespan of learning, which can take multiple recording sessions across many days. However, decoding across sessions is hindered due to a high amount of session-to-session variability in neural recordings. Here, we propose utilizing multidimensional neural signals from Localized semi-non negative matrix factorization processing (LocaNMF) with high behavioral correlations across sessions, as well as a novel data augmentation method and region-based converter, to optimally align neural recordings. We apply our method to widefield calcium activity across many sessions while a mouse learns a decision-making task. We first decompose each session's neural activity into region-based spatial and temporal components that can reconstruct the data with high variance. Next, we perform data augmentation of the neural data to smooth the variability across trials. Finally, we design a region-based neural converter across sessions that transforms one session's neural signals into another while preserving its dimensionality. We test our approach by decoding the mouse's behavior in the decision-making task, and find that our method outperforms approaches that use purely anatomical information while analyzing neural activity across sessions. By preserving the high dimensionality in the neural data while converting neural activity across sessions, our method can be used towards further analyses of neural data across sessions and the neural correlates of learning.more » « less
An official website of the United States government

