skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methods for Host-based Intrusion Detection with Deep Learning
Host-based Intrusion Detection Systems (HIDS) automatically detect events that indicate compromise by adversarial applications. HIDS are generally formulated as analyses of sequences of system events such as bash commands or system calls. Anomaly-based approaches to HIDS leverage models of normal (a.k.a. baseline) system behavior to detect and report abnormal events and have the advantage of being able to detect novel attacks. In this article, we develop a new method for anomaly-based HIDS using deep learning predictions of sequence-to-sequence behavior in system calls. Our proposed method, called the ALAD algorithm, aggregates predictions at the application level to detect anomalies. We investigate the use of several deep learning architectures, including WaveNet and several recurrent networks. We show that ALAD empowered with deep learning significantly outperforms previous approaches. We train and evaluate our models using an existing dataset, ADFA-LD, and a new dataset of our own construction, PLAID. As deep learning models are black box in nature, we use an alternate approach, allotaxonographs, to characterize and understand differences in baseline vs. attack sequences in HIDS datasets such as PLAID.  more » « less
Award ID(s):
1718083
PAR ID:
10386265
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Digital Threats: Research and Practice
Volume:
2
Issue:
4
ISSN:
2692-1626
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our brains are, “prediction machines”, where we are continuously comparing our surroundings with predictions from internal models generated by our brains. This is demonstrated by observing our basic low level sensory systems and how they predict environmental changes as we move through space and time. Indeed, even at higher cognitive levels, we are able to do prediction. We can predict how the laws of physics affect people, places, and things and even predict the end of someone’s sentence. In our work, we sought to create an artificial model that is able to mimic early, low level biological predictive behavior in a computer vision system. Our predictive vision model uses spatiotemporal sequence memories learned from deep sparse coding. This model is implemented using a biologically inspired architecture: one that utilizes sequence memories, lateral inhibition, and top-down feed- back in a generative framework. Our model learns the causes of the data in a completely unsupervised manner, by simply observing and learning about the world. Spatiotemporal features are learned by minimizing a reconstruction error convolved over space and time, and can subsequently be used for recognition, classification, and future video prediction. Our experiments show that we are able to accurately predict what will happen in the future; furthermore, we can use our predictions to detect anomalous, unexpected events in both synthetic and real video sequences. 
    more » « less
  2. null (Ed.)
    Smart grids integrate advanced information and communication technologies (ICTs) into traditional power grids for more efficient and resilient power delivery and management, but also introduce new security vulnerabilities that can be exploited by adversaries to launch cyber attacks, causing severe consequences such as massive blackout and infrastructure damages. Existing machine learning-based methods for detecting cyber attacks in smart grids are mostly based on supervised learning, which need the instances of both normal and attack events for training. In addition, supervised learning requires that the training dataset includes representative instances of various types of attack events to train a good model, which is sometimes hard if not impossible. This paper presents a new method for detecting cyber attacks in smart grids using PMU data, which is based on semi-supervised anomaly detection and deep representation learning. Semi-supervised anomaly detection only employs the instances of normal events to train detection models, making it suitable for finding unknown attack events. A number of popular semi-supervised anomaly detection algorithms were investigated in our study using publicly available power system cyber attack datasets to identify the best-performing ones. The performance comparison with popular supervised algorithms demonstrates that semi-supervised algorithms are more capable of finding attack events than supervised algorithms. Our results also show that the performance of semi-supervised anomaly detection algorithms can be further improved by augmenting with deep representation learning. 
    more » « less
  3. null (Ed.)
    Modern physical systems deploy large numbers of sensors to record at different time-stamps the status of different systems components via measurements such as temperature, pressure, speed, but also the component's categorical state. Depending on the measurement values, there are two kinds of sequences: continuous and discrete. For continuous sequences, there is a host of state-of-the-art algorithms for anomaly detection based on time-series analysis, but there is a lack of effective methodologies that are tailored specifically to discrete event sequences. This paper proposes an analytics framework for discrete event sequences for knowledge discovery and anomaly detection. During the training phase, the framework extracts pairwise relationships among discrete event sequences using a neural machine translation model by viewing each discrete event sequence as a "natural language". The relationship between sequences is quantified by how well one discrete event sequence is "translated" into another sequence. These pairwise relationships among sequences are aggregated into a multivariate relationship graph that clusters the structural knowledge of the underlying system and essentially discovers the hidden relationships among discrete sequences. This graph quantifies system behavior during normal operation. During testing, if one or more pairwise relationships are violated, an anomaly is detected. The proposed framework is evaluated on two real-world datasets: a proprietary dataset collected from a physical plant where it is shown to be effective in extracting sensor pairwise relationships for knowledge discovery and anomaly detection, and a public hard disk drive dataset where its ability to effectively predict upcoming disk failures is illustrated. 
    more » « less
  4. Abstract Background In the CRISPR-Cas9 system, the efficiency of genetic modifications has been found to vary depending on the single guide RNA (sgRNA) used. A variety of sgRNA properties have been found to be predictive of CRISPR cleavage efficiency, including the position-specific sequence composition of sgRNAs, global sgRNA sequence properties, and thermodynamic features. While prevalent existing deep learning-based approaches provide competitive prediction accuracy, a more interpretable model is desirable to help understand how different features may contribute to CRISPR-Cas9 cleavage efficiency. Results We propose a gradient boosting approach, utilizing LightGBM to develop an integrated tool, BoostMEC (Boosting Model for Efficient CRISPR), for the prediction of wild-type CRISPR-Cas9 editing efficiency. We benchmark BoostMEC against 10 popular models on 13 external datasets and show its competitive performance. Conclusions BoostMEC can provide state-of-the-art predictions of CRISPR-Cas9 cleavage efficiency for sgRNA design and selection. Relying on direct and derived sequence features of sgRNA sequences and based on conventional machine learning, BoostMEC maintains an advantage over other state-of-the-art CRISPR efficiency prediction models that are based on deep learning through its ability to produce more interpretable feature insights and predictions. 
    more » « less
  5. Automatically locating vulnerable statements in source code is crucial to assure software security and alleviate developers' debugging efforts. This becomes even more important in today's software ecosystem, where vulnerable code can flow easily and unwittingly within and across software repositories like GitHub. Across such millions of lines of code, traditional static and dynamic approaches struggle to scale. Although existing machine-learning-based approaches look promising in such a setting, most work detects vulnerable code at a higher granularity – at the method or file level. Thus, developers still need to inspect a significant amount of code to locate the vulnerable statement(s) that need to be fixed. This paper presents Velvet, a novel ensemble learning approach to locate vulnerable statements. Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph and effectively understand code semantics and vulnerable patterns. To study Velvet's effectiveness, we use an off-the-shelf synthetic dataset and a recently published real-world dataset. In the static analysis setting, where vulnerable functions are not detected in advance, Velvet achieves 4.5× better performance than the baseline static analyzers on the real-world data. For the isolated vulnerability localization task, where we assume the vulnerability of a function is known while the specific vulnerable statement is unknown, we compare Velvet with several neural networks that also attend to local and global context of code. Velvet achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively, outperforming the baseline deep learning models by 5.3-29.0%. 
    more » « less