skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The characteristics of early-stage research into human genes are substantially different from subsequent research
Throughout the last 2 decades, several scholars observed that present day research into human genes rarely turns toward genes that had not already been extensively investigated in the past. Guided by hypotheses derived from studies of science and innovation, we present here a literature-wide data-driven meta-analysis to identify the specific scientific and organizational contexts that coincided with early-stage research into human genes throughout the past half century. We demonstrate that early-stage research into human genes differs in team size, citation impact, funding mechanisms, and publication outlet, but that generalized insights derived from studies of science and innovation only partially apply to early-stage research into human genes. Further, we demonstrate that, presently, genome biology accounts for most of the initial early-stage research, while subsequent early-stage research can engage other life sciences fields. We therefore anticipate that the specificity of our findings will enable scientists and policymakers to better promote early-stage research into human genes and increase overall innovation within the life sciences.  more » « less
Award ID(s):
1956338
PAR ID:
10386385
Author(s) / Creator(s):
;
Editor(s):
Munafò, Marcus
Date Published:
Journal Name:
PLOS Biology
Volume:
20
Issue:
1
ISSN:
1545-7885
Page Range / eLocation ID:
e3001520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human settlements on the Moon, crewed missions to Mars and space tourism will become a reality in the next few decades. Human presence in space, especially for extended periods of time, will therefore steeply increase. However, despite more than 60 years of spaceflight, the mechanisms underlying the effects of the space environment on human physiology are still not fully understood. Animals, ranging in complexity from flies to monkeys, have played a pioneering role in understanding the (patho)physiological outcome of critical environmental factors in space, in particular altered gravity and cosmic radiation. The use of animals in biomedical research is increasingly being criticized because of ethical reasons and limited human relevance. Driven by the 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, major efforts have been focused in the past decades on the development of alternative methods that fully bypass animal testing or so-called new approach methodologies. These new approach methodologies range from simple monolayer cultures of individual primary or stem cells all up to bioprinted 3D organoids and microfluidic chips that recapitulate the complex cellular architecture of organs. Other approaches applied in life sciences in space research contribute to the reduction of animal experimentation. These include methods to mimic space conditions on Earth, such as microgravity and radiation simulators, as well as tools to support the processing, analysis or application of testing results obtained in life sciences in space research, including systems biology, live-cell, high-content and real-time analysis, high-throughput analysis, artificial intelligence and digital twins. The present paper provides an in-depth overview of such methods to replace or reduce animal testing in life sciences in space research. 
    more » « less
  2. Abstract. Reproducible open science with FAIR data sharing principles requires research to be disseminated with open data and standardised metadata. Researchers in the geographic sciences may benefit from authoring and maintaining metadata from the earliest phases of the research life cycle, rather than waiting until the data dissemination phase. Fully open and reproducible research should be conducted within a version-controlled executable research compendium with registered pre-analysis plans, and may also involve research proposals, data management plans, and protocols for research with human subjects. We review metadata standards and research documentation needs through each phase of the research process to distil a list of features for software to support a metadata-rich open research life cycle. The review is based on open science and reproducibility literature and on our own work developing a template research compendium for conducting reproduction and replication studies. We then review available open source geographic metadata software against these requirements, finding each software program to offer a partial solution. We conclude with a vision for software-supported metadata-rich open research practices intended to reduce redundancies in open research work while expanding transparency and reproducibility in geographic research. 
    more » « less
  3. Abstract Research integrity, an essential precept of scientific inquiry and discovery, comprises norms such as Rigor, Reproducibility, and Responsibility (the 3R’s). Over the past decades, numerous issues have arisen that challenge the reliability of scientific studies, including irreproducibility crises, lack of good scientific principles, and erroneous communications, which have impacted the public’s trust in science and its findings. Here, we highlight one important component of research integrity that is often overlooked in the discussion of proposals for improving research quality and promoting robust research; one that spans from the lab bench to the dissemination of scientific work: responsible science communication. We briefly outline the role of education and institutions of higher education in teaching the tenets of good scientific practice and within that, the importance of adequate communications training. In that context, we present our framework of responsible science communication that we live by and teach to our students in courses and workshops that are part of the Johns Hopkins Bloomberg School of Public Health R 3 Center for Innovation in Science Education. 
    more » « less
  4. Abstract Sonification, or the practice of generating sound from data, is a promising alternative or complement to data visualization for exploring research questions in the life sciences. Expressing or communicating data in the form of sound rather than graphs, tables, or renderings can provide a secondary information source for multitasking or remote monitoring purposes or make data accessible when visualizations cannot be used. While popular in astronomy, neuroscience, and geophysics as a technique for data exploration and communication, its potential in the biological and biotechnological sciences has not been fully explored. In this review, we introduce sonification as a concept, some examples of how sonification has been used to address areas of interest in biology, and the history of the technique. We then highlight a selection of biology‐related publications that involve sonifications of DNA datasets and protein datasets, sonifications for data collection and interpretation, and sonifications aimed to improve science communication and accessibility. Through this review, we aim to show how sonification has been used both as a discovery tool and a communication tool and to inspire more life‐science researchers to incorporate sonification into their own studies. 
    more » « less
  5. Abstract Research, innovation, and progress in the life sciences are increasingly contingent on access to large quantities of data. This is one of the key premises behind the “open science” movement and the global calls for fostering the sharing of personal data, datasets, and research results. This paper reports on the outcomes of discussions by the panel “Open science, data sharing and solidarity: who benefits?” held at the 2021 Biennial conference of the International Society for the History, Philosophy, and Social Studies of Biology (ISHPSSB), and hosted by Cold Spring Harbor Laboratory (CSHL). 
    more » « less