Abstract There is a great interest in low-cost, versatile microfluidic platforms of which the fabrication processes are rapid, straightforward, and translatable to industrial mass productions. In addition, it is beneficial for microfluidic devices to be reconfigurable in the field, so that multiple functions can be realized by a minimum number of devices. Here, we present a versatile acrylic-tape platform which allows highly accessible rapid prototyping of microfluidic devices, as well as device reconfiguration to realize different functions. The clean-room-free fabrication and sealing process only requires a laser cutter, acrylic, and tapes and can be done by an untrained person in the field. We experimentally characterized the relationship between the capillary flow speed and the channel height, the latter of which can be well controlled by the fabrication process. Reconfiguration of microfluidic functions was demonstrated on a single acrylic-tape device, thanks to the reversible sealing enabled by functional tapes. Different pumping mechanisms, including on-chip pumps for better portability and syringe pumps for precise fluid control, have been employed for the demonstration of two-phase flow and droplet generation, respectively. The low-cost and versatile acrylic-tape microfluidic devices are promising tools for applications in a wide range of fields, especially for point-of-care biomedical and clinical applications. 
                        more » 
                        « less   
                    
                            
                            Microfluidic Pumps with Laser Streaming from Tips of Optical Fibers and Sewing Needles
                        
                    
    
            Abstract The discovery of photoacoustic laser streaming has opened up a new avenue to manipulate and drive fluids with light, but the necessity of an in situ “launch pad” has limited its utility in real‐world microfluidic applications due to both the size constraint and the complexity of fabrication. Here, it is demonstrated that 1) a versatile microfluidic pump can be materialized by using laser streaming from an optical fiber, and 2) laser streaming can be generated from a flat metal surface without any fabrication process. In the latter case, by focusing laser on the tip of a sewing needle tip, the needle can be turned into a micropump with controllable flow direction. Additionally, high‐speed imaging of the fluid motion and computational fluid dynamics simulations to confirm the photoacoustic principle of laser streaming are employed, and it is revealed that the streaming direction is determined by the direction of strongest intensity in the divergent ultrasound wavefront. Finally, the potential of laser streaming for microfluidic and optofluidic applications is demonstrated by successfully driving fluid inside a capillary tube. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1932734
- PAR ID:
- 10386449
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 10
- Issue:
- 24
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Sharp edge structures have been demonstrated as an efficient way of generating acoustic streaming in microfluidic devices, which finds numerous applications in fluid mixing, pumping, particle actuation, and cell lysis. A sharp tip capillary is widely available means of generating sharp structures without the need of microfabrication, which has been used for studying enzyme kinetics, droplet digital PCR, and mass spectrometry analysis. In this work, we studied the influence of liquid inside the vibrating glass capillary on its efficiency of generating acoustic streaming. Using fluorescence microscopy and fluorescent particles, we observed that adding liquid to the inside of the vibrating glass capillary changed the streaming patterns as well as led to increased streaming velocity. Based on the observed streaming patterns, we hypothesized the liquid present in the capillary changed vibration mode of the capillary, which is matched with COMSOL simulations. Finally, the utility of the liquid filled vibrating capillary was demonstrated for higher energy efficiency for fluid mixing and mass spectrometry experiments. This study will provide useful guidance when optimizing the efficiency of vibrating sharp tip capillary systems.more » « less
- 
            Rizzo, Piervincenzo; Su, Zhongqing; Ricci, Fabrizio; Peters, Kara J (Ed.)Anisotropic collagen-based biomaterials have gained significant attention in the fields of tissue engineering and regenerative medicine. They have shown great potential for wound dressing, corneal grafting, and exploring the mechanism of cancer cell invasion. Various external physical field-based methods for the fabrication of anisotropic collagen-based biomaterials have been developed, including electrospinning, microfluidic shearing, mechanical loading, and so on. In this study, we put forward an acoustic streaming-based method that uses acoustic wave-induced fluid streaming to control collagen self-assembly and fiber arrangement. Our acoustic device leverages a piezoelectric transducer to generate traveling acoustic waves in fluids, and the wave-fluid interaction further induces fluid streaming, known as acoustic streaming. If the fluid contains collagen macromolecules, the acoustic streaming is able to affect the collagen self-assembly process to create biomaterials containing directionally arranged collagen fibers along the streaming velocity direction. Therefore, this acoustic streaming-based method allows for manufacturing collagen hydrogel layers that contain acoustically arranged collagen fibers and have controlled anisotropic material properties. We performed a series of proof-of-concept experiments by using a fabricated acoustic device to control the self-assembly process of collagens loaded in a Petri dish. Our results show the effectiveness of arranging collagen fibers that follow the flow direction of acoustic streaming. To better understand the collagen manipulation mechanism, we used particle image velocimetry to characterize the acoustic wave-induced fluid streaming. We expect this study can contribute to the fabrication of collagen-based anisotropic biomaterials for biomedical applications.more » « less
- 
            Intraoperative imaging of slide-free specimens is crucial for oncology surgeries, allowing surgeons to quickly identify tumor margins for precise surgical guidance. While high-resolution ultraviolet photoacoustic microscopy has been demonstrated for slide-free histology, the imaging speed is insufficient, due to the low laser repetition rate and the limited depth of field. To address these challenges, we present parallel ultraviolet photoacoustic microscopy (PUV-PAM) with simultaneous scanning of eight optical foci to acquire histology-like images of slide-free fresh specimens, improving the ultraviolet PAM imaging speed limited by low laser repetition rates. The PUV-PAM has achieved an imaging speed of 0.4 square millimeters per second (i.e., 4.2 minutes per square centimeter) at 1.3-micrometer resolution using a 50-kilohertz laser. In addition, we demonstrated the PUV-PAM with eight needle-shaped beams for an extended depth of field, allowing fast imaging of slide-free tissues with irregular surfaces. We believe that the PUV-PAM approach will enable rapid intraoperative photoacoustic histology and provide prospects for ultrafast optical-resolution PAM.more » « less
- 
            Photoacoustic laser streaming provides a versatile technique to manipulate liquids and their suspended objects with light. However, only gold was used in the initial demonstrations. In this work, we first demonstrate that laser streaming can be achieved with common non-plasmonic metals such as Fe and W by their ion implantations in transparent substrates. We then investigate the effects of ion dose, substrate material and thickness on the strength and duration of streaming. Finally, we vary laser pulse width, repetition rate and power to understand the observed threshold power for laser streaming. It is found that substrate thickness has a negligible effect on laser streaming down to 0.1 mm, glass and quartz produce much stronger streaming than sapphire because of their smaller thermal conductivity, while quartz exhibits the longest durability than glass and sapphire under the same laser intensity. Compared with Au, Fe and W with higher melting points show a longer lifetime although they require a higher laser intensity to achieve a similar speed of streaming. To generate a continuous laser streaming, the laser must have a minimum pulse repetition rate of 10 Hz and meet the minimum pulse width and energy to generate a transient vapor layer. This vapor layer enhances the generation of ultrasound waves, which are required for observable fluid jets. Principles of laser streaming and temperature simulation are used to explain these observations, and our study paves the way for further materials engineering and device design for strong and durable laser streaming.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
