skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building a bridge between adaptive capacity and adaptive potential to understand responses to environmental change
Abstract Adaptive capacity is a topic at the forefront of environmental change research with roots in both social, ecological, and evolutionary science. It is closely related to the evolutionary biology concept of adaptive potential. In this systematic literature review, we: (1) summarize the history of these topics and related fields; (2) assess relationship(s) between the concepts among disciplines and the use of the terms in climate change research, and evaluate methodologies, metrics, taxa biases, and the geographic scale of studies; and (3) provide a synthetic conceptual framework to clarify concepts. Bibliometric analyses revealed the terms have been used most frequently in conservation and evolutionary biology journals, respectively. There has been a greater growth in studies of adaptive potential than adaptive capacity since 2001, but a greater geographical extent of adaptive capacity studies. Few studies include both, and use is often superficial. Our synthesis considers adaptive potential as one process contributing to adaptive capacity of complex systems, notes “sociological” adaptive capacity definitions include actions aimed at desired outcome (i.e., policies) as a system driver whereas “biological” definitions exclude such drivers, and suggests models of adaptive capacity require integration of evolutionary and social–ecological system components.  more » « less
Award ID(s):
1757324
PAR ID:
10386457
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
12
ISSN:
1354-1013
Page Range / eLocation ID:
p. 2656-2668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the adaptive capacity of ecosystems to cope with change is crucial to management. However, unclear and often confusing definitions of adaptive capacity make application of this concept difficult. In this paper, we revisit definitions of adaptive capacity and operationalize the concept. We define adaptive capacity as the latent potential of an ecosystem to alter resilience in response to change. We present testable hypotheses to evaluate complementary attributes of adaptive capacity that may help further clarify the components and relevance of the concept. Adaptive sampling, inference and modeling can reduce key uncertainties incrementally over time and increase learning about adaptive capacity. Such improvements are needed because uncertainty about global change and its effect on the capacity of ecosystems to adapt to social and ecological change is high. 
    more » « less
  2. null (Ed.)
    This article explores how scientists adapt to a changing climate. To do this, we bring examples from a case study of salmon habitat restorationists in the Columbia River Basin into conversation with concepts from previous work on change and stability in knowledge infrastructures and scientific practice. In order to adapt, ecological restorationists are increasingly relying on predictive modeling tools, as well as initiating broader changes in the interdisciplinary nature of the field of ecological restoration itself. We explore how the field of ecological restoration is shifting its conceptual gaze from restoring to past, historic baselines to anticipating a no-analog future and consider what this means in terms of understanding the adaptive capacity of knowledge infrastructures and epistemic communities more broadly. We argue that identifying how scientists themselves conceptualize drivers of change and respond to these changes is an important step in understanding what adaptive capacity in science might entail. We offer these examples as a provocation for thinking about “adaptive epistemologies” and how adaptation by scientists themselves can facilitate or hinder particular environmental or sociotechnical futures. 
    more » « less
  3. Abstract The concept of adaptive capacity has received significant attention within social-ecological and environmental change research. Within both the resilience and vulnerability literatures specifically, adaptive capacity has emerged as a fundamental concept for assessing the ability of social-ecological systems to adapt to environmental change. Although methods and indicators used to evaluate adaptive capacity are broad, the focus of existing scholarship has predominately been at the individual- and household- levels. However, the capacities necessary for humans to adapt to global environmental change are often a function of individual and societal characteristics, as well as cumulative and emergent capacities across communities and jurisdictions. In this paper, we apply a systematic literature review and co-citation analysis to investigate empirical research on adaptive capacity that focus on societal levels beyond the household. Our review demonstrates that assessments of adaptive capacity at higher societal levels are increasing in frequency, yet vary widely in approach, framing, and results; analyses focus on adaptive capacity at many different levels (e.g. community, municipality, global region), geographic locations, and cover multiple types of disturbances and their impacts across sectors. We also found that there are considerable challenges with regard to the ‘fit’ between data collected and analytical methods used in adequately capturing the cross-scale and cross-level determinants of adaptive capacity. Current approaches to assessing adaptive capacity at societal levels beyond the household tend to simply aggregate individual- or household-level data, which we argue oversimplifies and ignores the inherent interactions within and across societal levels of decision-making that shape the capacity of humans to adapt to environmental change across multiple scales. In order for future adaptive capacity research to be more practice-oriented and effectively guide policy, there is a need to develop indicators and assessments that are matched with the levels of potential policy applications. 
    more » « less
  4. Abstract Decades of research have illuminated the underlying ingredients that determine the scope of evolutionary responses to climate change. The field of evolutionary biology therefore stands ready to take what it has learned about influences upon the rate of adaptive evolution—such as population demography, generation time, and standing genetic variation—and apply it to assess if and how populations can evolve fast enough to “keep pace” with climate change. Here, our review highlights what the field of evolutionary biology can contribute and what it still needs to learn to provide more mechanistic predictions of the winners and losers of climate change. We begin by developing broad predictions for contemporary evolution to climate change based on theory. We then discuss methods for assessing climate‐driven contemporary evolution, including quantitative genetic studies, experimental evolution, and space‐for‐time substitutions. After providing this mechanism‐focused overview of both the evidence for evolutionary responses to climate change and more specifically, evolving to keep pace with climate change, we next consider the factors that limit actual evolutionary responses. In this context, we consider the dual role of phenotypic plasticity in facilitating but also impeding evolutionary change. Finally, we detail how a deeper consideration of evolutionary constraints can improve forecasts of responses to climate change and therefore also inform conservation and management decisions. This article is categorized under:Climate, Ecology, and Conservation > Observed Ecological ChangesClimate, Ecology, and Conservation > Extinction RiskAssessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change 
    more » « less
  5. null (Ed.)
    The socio-ecological systems (SESs) framework provides cross-disciplinary insight into complex environmental problems. Numerous studies have applied the SES framework to coastal and marine environments over the last two decades. We review and analyze 98 of those studies to (i) describe how SES concepts were examined and measured, (ii) describe how the studies included feedbacks and thresholds, and (iii) identify and analyze elements unique to coastal and marine SES frameworks. We find that progress has been made in understanding key SES properties in coastal and marine ecosystems, which include resilience, adaptive capacity, vulnerability, and governance. A variety of methods has been developed and applied to analyze these features qualitatively and quantitatively. We also find that recent studies have incorporated land-based stressors in their analyses of coastal issues related to nutrient runoff, bacterial pollution, and management of anadromous species to represent explicit links in land-to-sea continuums. However, the literature has yet to identify methods and data that can be used to provide causal evidence of non-linearities and thresholds within SES. In addition, our findings suggest that greater alignment and consistency are needed in models with regard to metrics and spatial boundaries between ecological and social systems to take full advantage of the SES framework and improve coastal and marine management. 
    more » « less