The pervasive loss of biodiversity in the Anthropocene necessitates rapid assessments of ecosystems to understand how they will respond to anthropogenic environmental change. Many studies have sought to describe the adaptive capacity (AC) of individual species, a measure that encompasses a species’ ability to respond and adapt to change. Only those adaptive mechanisms that can be used over the next few decades (e.g. via novel interactions, behavioural changes, hybridization, migration, etc.) are relevant to the timescale set by the rapid changes of the Anthropocene. The impacts of species loss cascade through ecosystems, yet few studies integrate the capacity of ecological networks to adapt to change with the ACs of its species. Here, we discuss three ecosystems and how their ecological networks impact the AC of species and vice versa. A more holistic perspective that considers the AC of species with respect to their ecological interactions and functions will provide more predictive power and a deeper understanding of what factors are most important to a species’ survival. We contend that the AC of a species, combined with its role in ecosystem function and stability, must guide decisions in assigning ‘risk’ and triaging biodiversity loss in the Anthropocene. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’. 
                        more » 
                        « less   
                    
                            
                            Adaptive Epistemologies: Conceptualizing Adaptation to Climate Change in Environmental Science
                        
                    
    
            This article explores how scientists adapt to a changing climate. To do this, we bring examples from a case study of salmon habitat restorationists in the Columbia River Basin into conversation with concepts from previous work on change and stability in knowledge infrastructures and scientific practice. In order to adapt, ecological restorationists are increasingly relying on predictive modeling tools, as well as initiating broader changes in the interdisciplinary nature of the field of ecological restoration itself. We explore how the field of ecological restoration is shifting its conceptual gaze from restoring to past, historic baselines to anticipating a no-analog future and consider what this means in terms of understanding the adaptive capacity of knowledge infrastructures and epistemic communities more broadly. We argue that identifying how scientists themselves conceptualize drivers of change and respond to these changes is an important step in understanding what adaptive capacity in science might entail. We offer these examples as a provocation for thinking about “adaptive epistemologies” and how adaptation by scientists themselves can facilitate or hinder particular environmental or sociotechnical futures. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1655884
- PAR ID:
- 10201903
- Date Published:
- Journal Name:
- Science, Technology, & Human Values
- ISSN:
- 0162-2439
- Page Range / eLocation ID:
- 016224391989851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Understanding the adaptive capacity of ecosystems to cope with change is crucial to management. However, unclear and often confusing definitions of adaptive capacity make application of this concept difficult. In this paper, we revisit definitions of adaptive capacity and operationalize the concept. We define adaptive capacity as the latent potential of an ecosystem to alter resilience in response to change. We present testable hypotheses to evaluate complementary attributes of adaptive capacity that may help further clarify the components and relevance of the concept. Adaptive sampling, inference and modeling can reduce key uncertainties incrementally over time and increase learning about adaptive capacity. Such improvements are needed because uncertainty about global change and its effect on the capacity of ecosystems to adapt to social and ecological change is high.more » « less
- 
            null (Ed.)Marine area-based conservation measures including no-take zones (areas with no fishing allowed) are often designed through lengthy processes that aim to optimize for ecological and social objectives. Their (semi) permanence generates high stakes in what seems like a one-shot game. In this paper, we theoretically and empirically explore a model of short-term area-based conservation that prioritizes adaptive co-management: temporary areas closed to fishing, designed by the fishers they affect, approved by the government, and adapted every 5 years. In this model, no-take zones are adapted through learning and trust-building between fishers and government fisheries scientists. We use integrated social-ecological theory and a case study of a network of such fisheries closures (“fishing refugia”) in northwest Mexico to hypothesize a feedback loop between trust, design, and ecological outcomes. We argue that, with temporary and adaptive area-based management, social and ecological outcomes can be mutually reinforcing as long as initial designs are ecologically “good enough” and supported in the social-ecological context. This type of adaptive management also has the potential to adapt to climate change and other social-ecological changes. This feedback loop also predicts the dangerous possibility that low trust among stakeholders may lead to poor design, lack of ecological benefits, eroding confidence in the tool’s capacity, shrinking size, and even lower likelihood of social-ecological benefits. In our case, however, this did not occur, despite poor ecological design of some areas, likely due to buffering by social network effects and alternative benefits. We discuss both the potential and the danger of temporary area-based conservation measures as a learning tool for adaptive co-management and commoning.more » « less
- 
            Abstract As infrastructure confront rapidly changing environments, there is an immediate need to provide the flexibility to pivot resources and how infrastructures are prioritized. Yet infrastructures are often categorized based on static criticality framings. We describedynamic criticalityas the flexibility to reprioritize infrastructure resources during disturbances. We find that the most important prerequisite for dynamic criticality is organizational adaptive capacity characterized by flexible goals, structures, sensemaking, and strategies. Dynamic capabilities are increasingly important in the Anthropocene, where accelerating conditions, uncertainty, and growing complexity are challenging infrastructures. We review sectors that deployed dynamic management approaches amidst changing disturbances: leadership and organizational change, defense, medicine, manufacturing, and disaster response. We use an inductive thematic analysis to identify key themes and competencies and analyze capabilities that describe dynamic criticality. These competencies drive adaptive capacity and open up the flexibility to pivot what is deemed critical, depending on the particulars of the hazard. We map these competencies to infrastructure systems and describe how infrastructure organizations may build adaptive capacity toward flexible priorities.more » « less
- 
            The speed and uncertainty of environmental change in the Anthropocene challenge the capacity of coevolving social–ecological–technological systems (SETs) to adapt or transform to these changes. Formal government and legal structures further constrain the adaptive capacity of our SETs. However, new, self-organized forms of adaptive governance are emerging at multiple scales in natural resource-based SETs. Adaptive governance involves the private and public sectors as well as formal and informal institutions, self-organized to fill governance gaps in the traditional roles of states. While new governance forms are emerging, they are not yet doing so rapidly enough to match the pace of environmental change. Furthermore, they do not yet possess the legitimacy or capacity needed to address disparities between the winners and losers from change. These emergent forms of adaptive governance appear to be particularly effective in managing complexity. We explore governance and SETs as coevolving complex systems, focusing on legal systems to understand the potential pathways and obstacles to equitable adaptation. We explore how governments may facilitate the emergence of adaptive governance and promote legitimacy in both the process of governance despite the involvement of nonstate actors, and its adherence to democratic values of equity and justice. To manage the contextual nature of the results of change in complex systems, we propose the establishment of long-term study initiatives for the coproduction of knowledge, to accelerate learning and synergize interactions between science and governance and to foster public science and epistemic communities dedicated to navigating transitions to more just, sustainable, and resilient futures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    