skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cyclic Diaryl λ 3 -Chloranes: Reagents and Their C–C and C–O Couplings with Phenols via Aryne Intermediates
Award ID(s):
1764328 2153972
PAR ID:
10386493
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
145
Issue:
1
ISSN:
0002-7863
Page Range / eLocation ID:
p. 345-358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monoligated and bis-ligated CCC-NHC pincer Fe complexes with n-butyl substituents have been synthesized by the Zr metalation/transmetalation route. Both the direct metalation/transmetalation and transmetalation from the isolated (BuCiCiCBu)ZrNMe2Cl2, 3, yielded the octahedrally coordinated Fe(III) bis-ligated complex [(BuCiCiCBu)2Fe]Cl, 2a. Transmetalation from in situ and isolated (BuCiCiCBu)ZrCl3, 5, in the presence of excess TMSCl and 1 equiv of the Fe source yielded the monoligated (BuCiCiCBu)FeCl2, 4. Conditions that convert [(BuCiCiCBu)2Fe]+, 2, to (BuCiCiCBu)FeCl2, 4, complex have been found. Characterization included 1H NMR, UV−visible, femtosecond transient absorption spectroscopies, TDDFT computations, and mass spectroscopy along with X-ray crystallographic structure determinations. 
    more » « less
  2. Abstract Photochemical C−C coupling reactions can be tailored to industrial chemical processes and preparations of pharmaceuticals. Recent approaches in this area are limited to using precious transition metal coordination complexes that facilitate light absorption and redox processes with benchtop chemicals. Herein, we propose a paradigm that involves all‐in‐one organo‐photo‐auxiliaries,thio‐heteroarenes, which exhibit unique photophysical properties. Thesethio‐heteroarenes were employed to prepare several all‐in‐one ionic photo‐salts from commercially available alkyl/benzyl and heterocyclic halides via aromaticity‐mediated nucleophilic substitution reactions. From the library of >30 salts, we performed on‐demand photochemical C−C coupling reactions to isolate numerous symmetrical and unsymmetrical diary/alkyl‐ethanes with yields up to 84% and mass balance as high as 96%. We also investigated the influence of structural features/properties on the outcomes of the photochemical C−C coupling reactions. The current photochemical C−C method was successful in the isolation of >30 photoproducts, including the natural product Brittonin A, a precursor of Imipramine, and derivatives of the bioactive Honokiol Analogues. Furthermore, transient absorption spectroscopy and time‐dependent density functional theory calculations were used to decipher the nature of light‐promoted electronic transitions. 
    more » « less
  3. Abstract Aryl tosylates are an attractive class of electrophiles for cross‐coupling reactions due to ease of synthesis, low price, and the employment of C−O electrophiles, however, the reactivity of aryl tosylates is low. Herein, we report the Ni‐catalyzed C(sp2)−C(sp3) Kumada cross‐coupling of aryl tosylates with primary and secondary alkyl Grignard reagents. The method delivers valuable alkyl arenes by cross‐coupling with challenging alkyl organometallics possessing β‐hydrogens that are prone to β‐hydride elimination and homo‐coupling. The reaction is catalyzed by an air‐ and moisture stable‐Ni(II) precatalyst. A broad range of electronically‐varied aryl tosylates, including bis‐tosylates, underwent this transformation, and many examples are suitable at mild room temperature conditions. The combination of Ar−X cross‐coupling with the facile Ar−OH activation/cross‐coupling strategy permits for orthogonal cross‐coupling with challenging alkyl organometallics. Furthermore, we demonstrate that the method operates with TON reaching 2000, which is one of the highest turnovers observed to date in Ni‐catalyzed cross‐couplings. magnified image 
    more » « less