Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The transition‐metal‐catalyzed Suzuki‐Miyaura cross‐coupling (SMC) reaction of organoboron nucleophiles with aryl (pseudo)halide electrophiles is a reliable method for carbon‐carbon bond formation. This reaction generally requires the use of an exogenous base to promote transmetalation process, which limits the substrate scope of the reaction due to undesired protodeboronation and functional group incompatibilities. Here, we established a base‐free SMC reaction via a conceptually different electrophilic substitution transmetalation (EST). This transformation is applicable to a wide range of base‐sensitive and sterically hindered organoborons. Key to this advance is the formation of a stable cationic palladium(II) or nickel(II) intermediate via experimental and theoretical investigations. In a broader context, this research further expands the synthetic boundary of cross‐coupling chemistry.more » « lessFree, publicly-accessible full text available July 22, 2026
- 
            Abstract Computational methods for predicting product ratios in dynamically controlled reactions with shallow intermediates or bifurcating pathways after an ambimodal transition state are reviewed and benchmarked. The range of methods includes molecular dynamics simulations, machine learning-based models and recent advancements in correlational methods, all of which rely on quantum mechanical computations. Together, these approaches form a computational toolbox that enhances the efficiency and effectiveness of exploring reaction selectivity influenced by dynamic effects.more » « lessFree, publicly-accessible full text available April 24, 2026
- 
            Strain Release in Hydrogen Atom Transfer from 1,4-Disubstituted Cyclohexanes to the Cumyloxy RadicalAbstract A kinetic, product, and computational study on the reactions of the cumyloxyl radical (CumO•) with 1,4-dimethyl- and 1,4-diphenylcyclohexanes is reported. The rate constants for hydrogen atom transfer (HAT) from the C–H bonds of these substrates to CumO•, together with the corresponding oxygenation product distributions reveal the role of strain release on reaction site selectivity. Transition structures and activation barriers obtained by DFT calculations are in excellent agreement with the experimental results. Tertiary/secondary ratios of oxygenation products of 0.6, 1.0, and 3.3 were observed, for trans-1,4-dimethyl-, cis-1,4-dimethyl-, and trans-1,4-diphenylcyclohexane, respectively. With cis-1,4-diphenylcyclohexane, exclusive formation of the diastereomeric tertiary alcohol products was observed. Within the two diastereomeric couples, the tertiary equatorial C–H bond in the cis- isomer is ca. 6 and 27 times more reactive, respectively, than the tertiary axial ones, a behavior that reflects the release of 1,3-diaxial strain in the HAT transition state. The tertiary axial C–H bonds of the four substrates show remarkably similar reactivities in spite of the much greater stabilization of the benzyl radicals resulting from HAT from the 1,4-diphenylcyclohexanes. The lack of benzylic acceleration is discussed in the framework of Bernasconi’s ‘principle of nonperfect synchronization’.more » « lessFree, publicly-accessible full text available June 10, 2026
- 
            Abstract While enantioenriched alcohols are highly significant in medicinal chemistry, total synthesis, and materials science, the stereoselective synthesis of tertiary alcohols with two adjacent stereocenters remains a formidable challenge. In this study, we present a dual catalysis approach utilizing photoredox and nickel catalysts to enable the unprecedented chemoselective functionalization of tertiary allylic C−H bonds in allyl ethers instead of cleaving the C−O bond. The resulting allyl‐Ni intermediates can undergo coupling with various aldehydes, facilitating a novel enantioconvergent approach to access extensively functionalized homoallylicsec,tert‐vicinal diols frameworks. This protocol exhibits nice tolerance towards functional groups, a broad scope of substrates, excellent diastereo‐ and enantioselectivity (up to 20 : 1 dr, 99 %ee). Mechanistic studies suggested that allyl‐NiIIacts as the nucleophilic species in the coupling reaction with carbonyls.more » « lessFree, publicly-accessible full text available April 17, 2026
- 
            ABSTRACT Reaction mechanism studies typically involve the characterization of products, and intermediates are often characterized by (sub)millisecond techniques, such as nuclear magnetic resonance, while femto/attosecond spectroscopies are used to elucidate the evolution of transition states and electron dynamics. However, due to the lack of detection techniques in the microsecond to nanosecond range, as well as the emergent complexity with increasing scale, most of the proposed intermediates have not yet been detected, which significantly hinders reaction optimization. Here, we present such a nanosecond-scale real-time single-molecule electrical monitoring technique. Using this technique, a series of hidden intermediates in an example Morita-Baylis-Hillman reaction were directly observed, allowing the visualization of the reaction pathways, clarification of the two proposed proton transfer pathways, and quantitative description of their contributions to the turnover. Moreover, the emergent complexity of the catalysis, including the catalysis oscillation effect and the proton quantum tunneling effect, is further unveiled. Finally, this useful yet low-yield reaction was successfully catalyzed by the application of an electric field, leading to a high turnover frequency (∼5000 s−1 at a 1 V bias voltage). This new paradigm of mechanistic study and reaction optimization shows potential application in scalable synthesis by integrated single-molecule electronic devices on chip.more » « less
- 
            Abstract The chemiluminescent light‐emission pathway of phenoxy‐1,2‐dioxetane luminophores attracts growing interest within the scientific community. Dioxetane probes undergoing rapid flash‐type chemiexcitation exhibit higher detection sensitivity than those with a slow glow‐type chemiexcitation rate. We discovered that dioxetanes fused to non‐strained six‐member rings, with hetero atoms or inductive electron‐withdrawing groups, present both accelerated chemiexcitation rates and elevated chemical stability compared to dioxetanes fused to four‐member strained rings. DFT computational simulations supported the chemiexcitation acceleration observed by spiro‐fused six‐member rings with inductive electron‐withdrawing groups of dioxetanes. Specifically, a spiro‐dioxetane with a six‐member sulfone ring exhibited a chemiexcitation rate 293‐fold faster than that of spiro‐adamantyl‐dioxetane. A turn‐ON dioxetane probe for the detection of the enzyme β‐galactosidase, containing the six‐member sulfone unit, exhibited a S/N value of 108 in LB cell growth medium. This probe demonstrated a substantial increase in detection sensitivity towardsE. colibacterial cells expressing β‐galactosidase, with an LOD value that is 44‐fold more sensitive than that obtained by the adamantyl counterpart. The accelerated chemiexcitation and the elevated chemical stability presented by dioxetane containing a spiro‐fused six‐member ring with a sulfone inductive electron‐withdrawing group, make it an ideal candidate for designing efficient turn‐on chemiluminescent probes with exceptionally high detection sensitivity.more » « lessFree, publicly-accessible full text available November 11, 2025
- 
            Abstract Cyclobutanes are prominent structural components in natural products and drug molecules. With the advent of strain‐release‐driven synthesis, ring‐opening reactions of bicyclo[1.1.0]butanes (BCBs) provide an attractive pathway to construct these three‐dimensional structures. However, the stereoselective difunctionalization of the central C−C σ‐bonds remains challenging. Reported herein is a covalent‐based organocatalytic strategy that exploits radical NHC catalysis to achieve diastereoselective acylfluoroalkylation of BCBs under mild conditions. The Breslow enolate acts as a single electron donor and provides an NHC‐bound ketyl radical with appropriate steric hindrance, which effectively distinguishes between the two faces of transient cyclobutyl radicals. This operationally simple method tolerates various fluoroalkyl reagents and common functional groups, providing a straightforward access to polysubstituted cyclobutanes (75 examples, up to >19 : 1 d.r.). The combined experimental and theoretical investigations of this organocatalytic system confirm the formation of the NHC‐derived radical and provide an understanding of how stereoselective radical‐radical coupling occurs.more » « less
- 
            Abstract Nitriles are uncommon in nature and are typically constructed from oximes through the oxidative decarboxylation of amino acid substrates or from the derivatization of carboxylic acids. Here we report a third nitrile biosynthesis strategy featuring the cyanobacterial nitrile synthase AetD. During the biosynthesis of the eagle-killing neurotoxin, aetokthonotoxin, AetD transforms the 2-aminopropionate portion of 5,7-dibromo-l-tryptophan to a nitrile. Employing a combination of structural, biochemical and biophysical techniques, we characterized AetD as a non-haem diiron enzyme that belongs to the emerging haem-oxygenase-like dimetal oxidase superfamily. High-resolution crystal structures of AetD together with the identification of catalytically relevant products provide mechanistic insights into how AetD affords this unique transformation, which we propose proceeds via an aziridine intermediate. Our work presents a unique template for nitrile biogenesis and portrays a substrate binding and metallocofactor assembly mechanism that may be shared among other haem-oxygenase-like dimetal oxidase enzymes.more » « less
- 
            Abstract Radical substitution is a useful method to functionalize heterocycles, as in the venerable Minisci reaction. Empirically observed regiochemistries indicate that the CF2H radical has a nucleophilic character similar to alkyl radicals, but the CF3radical is electrophilic. While the difference between •CH3and •CF3is well understood, the reason that one and two Fs make little difference but the third has a large effect is puzzling. DFT calculations with M06-2X both reproduce experimental selectivities and also lead to an explanation of this difference. Theoretical methods reveal how the F inductive withdrawal and conjugative donation alter radical properties, but only CF3becomes decidedly electrophilic toward heterocycles. Here, we show a simple model to explain the radical orbital energy trends and resulting nucleophilicity or electrophilicity of fluorinated radicals.more » « less
- 
            Abstract We describe a full account of our synthetic strategy leading to the first total synthesis of the manzamine alkaloid lissodendoric acid A . These efforts demonstrate that strained cyclic allenes are valuable synthetic building blocks and can be employed efficiently in total synthesis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
