skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inflammation in Myeloid Malignancies: From Bench to Bedside
ABSTRACT Myeloid malignancies, stemming from a somatically mutated hematopoietic clone, can cause a wide variety of clinical consequences, including pancytopenia in myelodysplastic syndrome, overproduction of three myeloid lineages in myeloproliferative neoplasm, and the rapid growth of immature hematopoietic cells in acute myeloid leukemia (AML). It is becoming clear that inflammation is a hallmark feature of clonal myeloid conditions, ranging from clonal hematopoiesis of indeterminate potential to AML. Fundamental findings from laboratory research on inflammation in myeloid malignancies has potential implications for diagnosis, prognostication, and treatment in these diseases. In this review, we highlighted some pertinent basic science findings regarding the role of inflammation in myeloid malignancies and speculated how these findings could impact the clinical care of patients.  more » « less
Award ID(s):
1936833
PAR ID:
10386536
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Immunotherapy and Precision Oncology
Volume:
4
Issue:
3
ISSN:
2666-2345
Page Range / eLocation ID:
160 to 167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Philadelphia-negative myeloproliferative neoplasms (MPNs) occur when there is over-production of myeloid cells stemming from hematopoietic stem cells with constitutive activation of JAK/STAT signaling, with JAK2V617F being the most commonly occurring somatic driver mutation. Chronic inflammation is a hallmark feature of MPNs and it is now evident that inflammation is not only a symptom of MPN but can also provoke development and precipitate progression of disease. Herein we have considered major MPN driver mutation independent host, lifestyle, and environmental factors in the pathogenesis of MPN based upon epidemiological and experimental data. In addition to the traditional risk factors such as advanced age, there is evidence to indicate that inflammatory stimuli such as smoking can promote and drive MPN clone emergence and expansion. Diet induced inflammation could also play a role in MPN clonal expansion. Recognition of factors associated with MPN development support lifestyle modifications as an emerging therapeutic tool to restrain inflammation and diminish MPN progression. 
    more » « less
  2. Recurrence and drug resistance are major challenges in the treatment of acute myeloid leukemia (AML) that spur efforts to identify new clinical targets and active agents. STAT3 has emerged as a potential target in resistant AML, but inhibiting STAT3 function has proven challenging. This paper describes synthetic studies and biological assays for a naphthalene sulfonamide inhibitor class of molecules that inhibit G-CSF-induced STAT3 phosphorylation in cellulo and induce apoptosis in AML cells. We describe two different approaches to inhibitor design: first, variation of substituents on the naphthalene sulfonamide core allows improvements in anti-STAT activity and creates a more thorough understanding of anti-STAT SAR. Second, a novel approach involving hybrid sulfonamide–rhodium( ii ) conjugates tests our ability to use cooperative organic–inorganic binding for drug development, and to use SAR studies to inform metal conjugate design. Both approaches have produced compounds with improved binding potency. In vivo and in cellulo experiments further demonstrate that these approaches can also lead to improved activity in living cells, and that compound 3aa slows disease progression in a xenograft model of AML. 
    more » « less
  3. null (Ed.)
    FLT3-mutant acute myeloid leukemia (AML) is an aggressive form of leukemia with poor prognosis. Treatment with FLT3 inhibitors frequently produces a clinical response, but the disease nevertheless often recurs. Recent studies have revealed system-wide gene expression changes in FLT3-mutant AML cell lines in response to drug treatment. Here we sought a systems-level understanding of how these cells mediate these drug-induced changes. Using RNAseq data from AML cells with an internal tandem duplication FLT3 mutation (FLT3-ITD) under six drug treatment conditions including quizartinib and dexamethasone, we identified seven distinct gene programs representing diverse biological processes involved in AML drug-induced changes. Based on the literature knowledge about genes from these modules, along with public gene regulatory network databases, we constructed a network of FLT3-ITD AML. Applying the BooleaBayes algorithm to this network and the RNAseq data, we created a probabilistic, data-driven dynamical model of acquired resistance to these drugs. Analysis of this model reveals several interventions that may disrupt targeted parts of the system-wide drug response. We anticipate co-targeting these points may result in synergistic treatments that can overcome resistance and prevent eventual recurrence. 
    more » « less
  4. Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIPassociated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity. 
    more » « less
  5. Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential. 
    more » « less