skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Auxiliary Data from Similar Problems to Improve Automatic Open Response Scoring
As computer-based learning platforms have become ubiquitous, there is a growing need to better support teachers. Particularly in mathematics, teachers often rely on openended questions to assess students’ understanding. While prior works focusing on the development of automated openended work assessments have demonstrated their potential, many of those methods require large amounts of student data to make reliable estimates. We explore whether a problem specific automated scoring model could benefit from auxiliary data collected from similar problems to address this “cold start” problem. We examine factors such as sample size and the magnitude of similarity of utilized problem data. We find the use of data from similar problems not only provides benefits to improve predictive performance by increasing sample size, but also leads to greater overall model performance than using data solely from the original problem when sample size is held constant.  more » « less
Award ID(s):
1822830
PAR ID:
10386537
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference for Educational Data Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As computer-based learning platforms have become ubiq- uitous, there is a growing need to better support teachers. Particularly in mathematics, teachers often rely on open- ended questions to assess students’ understanding. While prior works focusing on the development of automated open- ended work assessments have demonstrated their potential, many of those methods require large amounts of student data to make reliable estimates. We explore whether a prob- lem specific automated scoring model could benefit from auxiliary data collected from similar problems to address this “cold start” problem. We examine factors such as sam- ple size and the magnitude of similarity of utilized problem data. We find the use of data from similar problems not only provides benefits to improve predictive performance by in- creasing sample size, but also leads to greater overall model performance than using data solely from the original prob- lem when sample size is held constant. 
    more » « less
  2. Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student openended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual answers. Several computer-based learning systems allow students to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an existing method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less
  3. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education in the form of numeric assessment scores. We examine the effectiveness of LLMs in evaluating student responses and scoring the responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide a quantitative score on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-provided scores for middle-school math problems. A similar approach was taken for training the SBERT-Canberra model, while the GPT4 model used a zero-shot learning approach. We evaluate and compare the models' performance in scoring accuracy. This study aims to further the ongoing development of automated assessment and feedback systems and outline potential future directions for leveraging generative LLMs in building automated feedback systems. 
    more » « less
  4. Staples, Anne Elizabeth (Ed.)
    Vocalizations in animals, particularly birds, are critically important behaviors that influence their reproductive fitness. While recordings of bioacoustic data have been captured and stored in collections for decades, the automated extraction of data from these recordings has only recently been facilitated by artificial intelligence methods. These have yet to be evaluated with respect to accuracy of different automation strategies and features. Here, we use a recently published machine learning framework to extract syllables from ten bird species ranging in their phylogenetic relatedness from 1 to 85 million years, to compare how phylogenetic relatedness influences accuracy. We also evaluate the utility of applying trained models to novel species. Our results indicate that model performance is best on conspecifics, with accuracy progressively decreasing as phylogenetic distance increases between taxa. However, we also find that the application of models trained on multiple distantly related species can improve the overall accuracy to levels near that of training and analyzing a model on the same species. When planning big-data bioacoustics studies, care must be taken in sample design to maximize sample size and minimize human labor without sacrificing accuracy. 
    more » « less
  5. The use of computer-based systems in classrooms has provided teachers with new opportunities in delivering content to students, supplementing instruction, and assessing student knowledge and comprehension. Among the largest benefits of these systems is their ability to provide students with feedback on their work and also report student performance and progress to their teacher. While computer-based systems can automatically assess student answers to a range of question types, a limitation faced by many systems is in regard to open-ended problems. Many systems are either unable to provide support for open-ended problems, relying on the teacher to grade them manually, or avoid such question types entirely. Due to recent advancements in natural language processing methods, the automation of essay grading has made notable strides. However, much of this research has pertained to domains outside of mathematics, where the use of open-ended problems can be used by teachers to assess students' understanding of mathematical concepts beyond what is possible on other types of problems. This research explores the viability and challenges of developing automated graders of open-ended student responses in mathematics. We further explore how the scale of available data impacts model performance. Focusing on content delivered through the ASSISTments online learning platform, we present a set of analyses pertaining to the development and evaluation of models to predict teacher-assigned grades for student open responses. 
    more » « less