- Award ID(s):
- 1931523
- PAR ID:
- 10541415
- Editor(s):
- Benjamin, Paaßen; Carrie, Demmans Epp
- Publisher / Repository:
- International Educational Data Mining Society
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
Martin Fred ; Norouzi, Narges ; Rosenthal, Stephanie (Ed.)This paper examines the use of LLMs to support the grading and explanation of short-answer formative assessments in K12 science topics. While significant work has been done on programmatically scoring well-structured student assessments in math and computer science, many of these approaches produce a numerical score and stop short of providing teachers and students with explanations for the assigned scores. In this paper, we investigate few-shot, in-context learning with chain-of-thought reasoning and active learning using GPT-4 for automated assessment of students’ answers in a middle school Earth Science curriculum. Our findings from this human-in-the-loop approach demonstrate success in scoring formative assessment responses and in providing meaningful explanations for the assigned score. We then perform a systematic analysis of the advantages and limitations of our approach. This research provides insight into how we can use human-in-the-loop methods for the continual improvement of automated grading for open-ended science assessments.more » « less
-
Abstract Argumentation, a key scientific practice presented in the
Framework for K-12 Science Education , requires students to construct and critique arguments, but timely evaluation of arguments in large-scale classrooms is challenging. Recent work has shown the potential of automated scoring systems for open response assessments, leveraging machine learning (ML) and artificial intelligence (AI) to aid the scoring of written arguments in complex assessments. Moreover, research has amplified that the features (i.e., complexity, diversity, and structure) of assessment construct are critical to ML scoring accuracy, yet how the assessment construct may be associated with machine scoring accuracy remains unknown. This study investigated how the features associated with the assessment construct of a scientific argumentation assessment item affected machine scoring performance. Specifically, we conceptualized the construct in three dimensions: complexity, diversity, and structure. We employed human experts to code characteristics of the assessment tasks and score middle school student responses to 17 argumentation tasks aligned to three levels of a validated learning progression of scientific argumentation. We randomly selected 361 responses to use as training sets to build machine-learning scoring models for each item. The scoring models yielded a range of agreements with human consensus scores, measured by Cohen’s kappa (mean = 0.60; range 0.38 − 0.89), indicating good to almost perfect performance. We found that higher levels ofComplexity andDiversity of the assessment task were associated with decreased model performance, similarly the relationship between levels ofStructure and model performance showed a somewhat negative linear trend. These findings highlight the importance of considering these construct characteristics when developing ML models for scoring assessments, particularly for higher complexity items and multidimensional assessments. -
Advancements in online learning platforms have revolutionized education in multiple different ways, transforming the learning experiences and instructional practices. The development of natural language processing and machine learning methods have helped understand and process student languages, comprehend their learning state, and build automated supports for teachers. With this, there has been a growing body of research in developing automated methods to assess students’ work both in mathematical and nonmathematical domains. These automated methods address questions of two categories; closed-ended (with limited correct answers) and open-ended (are often subjective and have multiple correct answers), where open-ended questions are mostly used by teachers to learn about their student’s understanding of a particular concept. Manually assessing and providing feedback to these open-ended questions is often arduous and time-consuming for teachers. For this reason, there have been several works to understand student responses to these open-ended questions to automate the assessment and provide constructive feedback to students. In this research, we seek to improve such a prior method for assessment and feedback suggestions for student open-ended works in mathematics. For this, we present an error analysis of the prior method ”SBERT-Canberra” for auto-scoring, explore various factors that contribute to the error of the method, and propose solutions to improve upon the method by addressing these error factors. We further intend to expand this approach by improving feedback suggestions for teachers to give to their students’ open-ended work.more » « less
-
Involving students in scientific modeling practice is one of the most effective approaches to achieving the next generation science education learning goals. Given the complexity and multirepresentational features of scientific models, scoring student-developed models is time- and cost-intensive, remaining one of the most challenging assessment practices for science education. More importantly, teachers who rely on timely feedback to plan and adjust instruction are reluctant to use modeling tasks because they could not provide timely feedback to learners. This study utilized machine learn- ing (ML), the most advanced artificial intelligence (AI), to develop an approach to automatically score student- drawn models and their written descriptions of those models. We developed six modeling assessment tasks for middle school students that integrate disciplinary core ideas and crosscutting concepts with the modeling practice. For each task, we asked students to draw a model and write a description of that model, which gave students with diverse backgrounds an opportunity to represent their understanding in multiple ways. We then collected student responses to the six tasks and had human experts score a subset of those responses. We used the human-scored student responses to develop ML algorithmic models (AMs) and to train the computer. Validation using new data suggests that the machine-assigned scores achieved robust agreements with human consent scores. Qualitative analysis of student-drawn models further revealed five characteristics that might impact machine scoring accuracy: Alternative expression, confusing label, inconsistent size, inconsistent position, and redundant information. We argue that these five characteristics should be considered when developing machine-scorable modeling tasks.more » « less
-
This research explores a novel human-in-the-loop approach that goes beyond traditional prompt engineering approaches to harness Large Language Models (LLMs) with chain-of-thought prompting for grading middle school students’ short answer formative assessments in science and generating useful feedback. While recent efforts have successfully applied LLMs and generative AI to automatically grade assignments in secondary classrooms, the focus has primarily been on providing scores for mathematical and programming problems with little work targeting the generation of actionable insight from the student responses. This paper addresses these limitations by exploring a human-in-the-loop approach to make the process more intuitive and more effective. By incorporating the expertise of educators, this approach seeks to bridge the gap between automated assessment and meaningful educational support in the context of science education for middle school students. We have conducted a preliminary user study, which suggests that (1) co-created models improve the performance of formative feedback generation, and (2) educator insight can be integrated at multiple steps in the process to inform what goes into the model and what comes out. Our findings suggest that in-context learning and human-in-the-loop approaches may provide a scalable approach to automated grading, where the performance of the automated LLM-based grader continually improves over time, while also providing actionable feedback that can support students’ open-ended science learning.more » « less