Abstract BackgroundInsecticide resistance in malaria vectors can be spatially highly heterogeneous, yet population structure analyses frequently find relatively high levels of gene flow among mosquito populations. Few studies have contemporaneously assessed phenotypic, genotypic and population structure analysis on mosquito populations and none at fine geographical scales. In this study, genetic diversity, population structure, and insecticide resistance profiles ofAnopheles funestusandAnopheles arabiensiswere examined across mosquito populations from and within neighbouring villages. MethodsMosquitoes were collected from 11 towns in southern Mozambique, as well as from different neighbourhoods within the town of Palmeira, during the peak malaria transmission season in 2016. CDC bottle bioassay and PCR assays were performed withAnophelesmosquitoes at each site to determine phenotypic and molecular insecticide resistance profiles, respectively. Microsatellite analysis was conducted on a subsample of mosquitoes to estimate genetic diversity and population structure. ResultsPhenotypic insecticide resistance to deltamethrin was observed inAn. funestussensu stricto (s.s.) throughout the area, though a high level of mortality variation was seen. However, 98% ofAn. funestus s.s.wereCYP6P9ahomozygous resistant.An. arabiensiswas phenotypically susceptible to deltamethrin and 99% werekdrhomozygous susceptible. BothAnophelesspecies exhibited high allelic richness and heterozygosity. Significant deviations from Hardy–Weinberg equilibrium were observed, and high linkage disequilibrium was seen forAn. funestus s.s.,supporting population subdivision. However, the FSTvalues were low for both anophelines (− 0.00457 to 0.04213), Nmvalues were high (9.4–71.8 migrants per generation), AMOVA results showed almost 100% genetic variation among and within individuals, andStructureanalysis showed no clustering ofAn. funestus s.s.andAn. arabiensispopulations. These results suggest high gene flow among mosquito populations. ConclusionDespite a relatively high level of phenotypic variation in theAn. funestuspopulation, molecular analysis shows the population is admixed. These data indicate thatCYP6P9aresistance markers do not capture all phenotypic variation in the area, but also that resistance genes of high impact are likely to easily spread in the area. Conversely, other strategies, such as transgenic mosquito release programmes will likely not face challenges in this locality.
more »
« less
Comparison of the variability in mortality data generated by CDC bottle bioassay, WHO tube test, and topical application bioassay using Aedes aegypti mosquitoes
Abstract BackgroundInsecticide resistance remains a major public health problem. Resistance surveillance is critical for effective vector control and resistance management planning. Commonly used insecticide susceptibility bioassays for mosquitoes are the CDC bottle bioassay and the WHO tube test. Less commonly used in the field but considered the gold standard for assessing insecticide susceptibility in the development of novel insecticides is the topical application bioassay. Each of these bioassays has critical differences in how they assess insecticide susceptibility that impacts their ability to differentiate between resistant and susceptible populations or determine different levels of resistance intensity. MethodsWe compared the CDC bottle bioassay, the WHO tube test, and the topical application bioassay in establishing the dose–response against deltamethrin (DM) using the DM-resistantAedes aegyptistrain MC1. Mosquitoes were exposed to a range of insecticide concentrations to establish a dose–response curve and assess variation around model predictions. In addition, 10 replicates of 20–25 mosquitoes were exposed to a fixed dose with intermediate mortality to assess the degree of variation in mortality. ResultsThe topical application bioassay exhibited the lowest amount of variation in the dose–response data, followed by the WHO tube test. The CDC bottle bioassay had the highest level of variation. In the fixed-dose experiment, a higher variance was similarly found for the CDC bottle bioassay compared with the WHO tube test and topical application bioassay. ConclusionThese data suggest that the CDC bottle bioassay has the lowest power and the topical application bioassay the highest power to differentiate between resistant and susceptible populations and assess changes over time and between populations. This observation has significant implications for the interpretation of surveillance results from different assays. Ultimately, it will be important to discuss optimal insecticide resistance surveillance tools in terms of the surveillance objective, practicality in the field, and accuracy of the tool to reach that objective. Graphical Abstract
more »
« less
- PAR ID:
- 10386568
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Parasites & Vectors
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1756-3305
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Insecticide resistance surveillance systems for vector-borne diseases are crucial for early detection of resistance and the implementation of evidence-based resistance management strategies. While insecticide susceptibility bioassays are typically conducted under controlled laboratory conditions, mosquitoes in the field experience varying environmental conditions, with temperature being a key determinant. Understanding the relationship between temperature and insecticide toxicity is essential for interpreting and extrapolating assay results across different climate zones or more locally across days with different weather conditions. In this study, we examined Aedes aegypti mosquitoes with different genetic backgrounds of insecticide resistance. Mosquitoes were homozygous for the knockdown resistance (kdr) F1534C mutation, plus either (1) homozygous for the kdr 1016V wildtype allele, (2) homozygous for the kdr V1016I mutant allele, or (3) heterozygous genetic crosses. These three genotypes were exposed to deltamethrin using WHO tube tests at three temperatures (22 °C, 27 °C, and 32 °C) and varying dosages. LC50 values were determined for each genotype and temperature combination. A negative temperature coefficient was observed exclusively in female mosquitoes homozygous for the 1016V wildtype allele, indicating reduced pyrethroid toxicity at higher temperatures. No temperature–toxicity relationship was found in males of this genotype or in other genotypes of either sex. These findings suggest that temperature may interact with kdr mutations and possibly even sex, highlighting the complex interactions between genetic mutations and environmental factors, such as temperature, in determining the insecticide resistance phenotype. Given the wide distribution of Ae. aegypti, understanding how local climate conditions influence insecticide performance will help improve control strategies and slow resistance evolution, protecting public health efforts against mosquito-borne diseasesmore » « less
-
The threat of antibiotic resistance warrants the discovery of agents with novel antimicrobial mechanisms. Antimicrobial peptides (AMPs) directly disrupting bacterial membranes may overcome resistance to traditional antibiotics. AMP development for clinical use has been mostly limited to topical application to date. We developed a rational framework for systematically addressing this challenge using libraries composed of 86 novel Trp- and Arg-rich engineered peptides tested against clinical strains of the most common multidrug-resistant bacteria known as ESKAPE pathogens. Structure-function correlations revealed minimum lengths (as low as 16 residues) and Trp positioning for maximum antibacterial potency with mean minimum inhibitory concentration (MIC) of 2–4 μM and corresponding negligible toxicity to mammalian cells. Twelve peptides were selected based on broad-spectrum activity against both gram-negative and -positive bacteria and <25% toxicity to mammalian cells at maximum test concentrations. Most of the selected PAX remained active against the colistin-resistant clinical strains. Of the selected peptides, the shortest (the 16-residue E35) was further investigated for antibacterial mechanism and proof-of-concept in vivo efficacy. E35 killed an extensively-resistant isolate of Pseudomonas aeruginosa (PA239 from the CDC, also resistant to colistin) by irreversibly disrupting the cell membranes as shown by propidium iodide incorporation, using flow cytometry and live cell imaging. As proof of concept, in vivo toxicity studies showed that mice tolerated a systemic dose of up to 30 mg/kg peptide and were protected with a single 5 mg/kg intravenous (IV) dose against an otherwise lethal intraperitoneal injection of PA239. Efficacy was also demonstrated in an immune-compromised Klebsiella pneumoniae infection model using a daily dose of 4mg/kg E35 systemically for 2 days. This framework defines the determinants of efficacy of helical AMPs composed of only cationic and hydrophobic amino acids and provides a path for a potential departure from the restriction to topical use of AMPs toward systemic application.more » « less
-
Mireji, Paul O (Ed.)West Nile virus (WNV) is the leading mosquito-borne disease causing-pathogen in the United States. Concerningly, there are no prophylactics or drug treatments for WNV and public health programs rely heavily on vector control efforts to lessen disease incidence. Insecticides can be effective in reducing vector numbers if implemented strategically, but can diminish in efficacy and promote insecticide resistance otherwise. Vector control programs which employ mass-fogging applications of insecticides, often conduct these methods during the late-night hours, when diel temperatures are coldest, and without a-priori knowledge on daily mosquito activity patterns. This study’s aims were to 1) quantify the effect of temperature on the toxicity of two conventional insecticides used in fogging applications (malathion and deltamethrin) toCulex tarsalis, an important WNV vector, and 2) quantify the time of host-seeking ofCx.tarsalisand other local mosquito species in Maricopa County, Arizona. The temperature-toxicity relationship of insecticides was assessed using the WHO tube bioassay, and adultCx.tarsalis, collected as larvae, were exposed to three different insecticide doses at three temperature regimes (15, 25, and 35°C; 80% RH). Time of host-seeking was assessed using collection bottle rotators with encephalitis vector survey traps baited with dry ice, first at 3h intervals during a full day, followed by 1h intervals during the night-time. Malathion became less toxic at cooler temperatures at all doses, while deltamethrin was less toxic at cooler temperatures at the low dose. Regarding time of host-seeking,Cx.tarsalis,Aedes vexans, andCulex quinquefasciatuswere the most abundant vectors captured. During the 3-hour interval surveillance over a full day,Cx.tarsaliswere most-active during post-midnight biting (00:00–6:00), accounting for 69.0% of allCx.tarsalis, while pre-midnight biting (18:00–24:00) accounted for 30.0% ofCx.tarsalis. During the 1-hour interval surveillance overnight,Cx.tarsaliswere most-active during pre-midnight hours (18:00–24:00), accounting for 50.2% ofCx.tarsaliscaptures, while post-midnight biting (00:00–6:00) accounted for 49.8% ofCx.tarsalis. Our results suggest that programs employing large-scale applications of insecticidal fogging should consider temperature-toxicity relationships coupled with time of host-seeking data to maximize the efficacy of vector control interventions in reducing mosquito-borne disease burden.more » « less
-
SUMMARY With increasing resistance to anti-parasitic drugs, it has become more important to detect and recognize phenotypes of resistant isolates. Molecular methods of detecting resistant isolates are limited at present. Here, we introduce a microfluidic bioassay to measure phenotype using parameters of nematode locomotion. We illustrate the technique on larvae of an animal parasite Oesophagostomum dentatum. Parameters of sinusoidal motion such as propagation velocity, wavelength, wave amplitude, and oscillation frequency depended on the levamisole-sensitivity of the isolate of parasitic nematode. The levamisole-sensitive isolate (SENS) had a mean wave amplitude of 135 μ m, which was larger than 123 μ m of the levamisole-resistant isolate (LEVR). SENS had a mean wavelength of 373 μ m, which was less than 393 μ m of LEVR. The mean propagation velocity of SENS, 149 μ m s −1 , was similar to LEVR, 143 μ m s −1 . The propagation velocity of the isolates was inhibited by levamisole in a concentration-dependent manner above 0·5 μ m . The EC 50 for SENS was 3 μ m and the EC 50 for LEVR was 10 μ m . This microfluidic technology advances present-day nematode migration assays and provides a better quantification and increased drug sensitivity. It is anticipated that the bioassay will facilitate study of resistance to other anthelmintic drugs that affect locomotion.more » « less
An official website of the United States government
