skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2047572

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design. 
    more » « less
  2. Abstract BackgroundInsecticide resistance remains a major public health problem. Resistance surveillance is critical for effective vector control and resistance management planning. Commonly used insecticide susceptibility bioassays for mosquitoes are the CDC bottle bioassay and the WHO tube test. Less commonly used in the field but considered the gold standard for assessing insecticide susceptibility in the development of novel insecticides is the topical application bioassay. Each of these bioassays has critical differences in how they assess insecticide susceptibility that impacts their ability to differentiate between resistant and susceptible populations or determine different levels of resistance intensity. MethodsWe compared the CDC bottle bioassay, the WHO tube test, and the topical application bioassay in establishing the dose–response against deltamethrin (DM) using the DM-resistantAedes aegyptistrain MC1. Mosquitoes were exposed to a range of insecticide concentrations to establish a dose–response curve and assess variation around model predictions. In addition, 10 replicates of 20–25 mosquitoes were exposed to a fixed dose with intermediate mortality to assess the degree of variation in mortality. ResultsThe topical application bioassay exhibited the lowest amount of variation in the dose–response data, followed by the WHO tube test. The CDC bottle bioassay had the highest level of variation. In the fixed-dose experiment, a higher variance was similarly found for the CDC bottle bioassay compared with the WHO tube test and topical application bioassay. ConclusionThese data suggest that the CDC bottle bioassay has the lowest power and the topical application bioassay the highest power to differentiate between resistant and susceptible populations and assess changes over time and between populations. This observation has significant implications for the interpretation of surveillance results from different assays. Ultimately, it will be important to discuss optimal insecticide resistance surveillance tools in terms of the surveillance objective, practicality in the field, and accuracy of the tool to reach that objective. Graphical Abstract 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2026
  4. A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  5. Insecticide resistance surveillance systems for vector-borne diseases are crucial for early detection of resistance and the implementation of evidence-based resistance management strategies. While insecticide susceptibility bioassays are typically conducted under controlled laboratory conditions, mosquitoes in the field experience varying environmental conditions, with temperature being a key determinant. Understanding the relationship between temperature and insecticide toxicity is essential for interpreting and extrapolating assay results across different climate zones or more locally across days with different weather conditions. In this study, we examined Aedes aegypti mosquitoes with different genetic backgrounds of insecticide resistance. Mosquitoes were homozygous for the knockdown resistance (kdr) F1534C mutation, plus either (1) homozygous for the kdr 1016V wildtype allele, (2) homozygous for the kdr V1016I mutant allele, or (3) heterozygous genetic crosses. These three genotypes were exposed to deltamethrin using WHO tube tests at three temperatures (22 °C, 27 °C, and 32 °C) and varying dosages. LC50 values were determined for each genotype and temperature combination. A negative temperature coefficient was observed exclusively in female mosquitoes homozygous for the 1016V wildtype allele, indicating reduced pyrethroid toxicity at higher temperatures. No temperature–toxicity relationship was found in males of this genotype or in other genotypes of either sex. These findings suggest that temperature may interact with kdr mutations and possibly even sex, highlighting the complex interactions between genetic mutations and environmental factors, such as temperature, in determining the insecticide resistance phenotype. Given the wide distribution of Ae. aegypti, understanding how local climate conditions influence insecticide performance will help improve control strategies and slow resistance evolution, protecting public health efforts against mosquito-borne diseases 
    more » « less
    Free, publicly-accessible full text available March 1, 2026