Northwest Africa transitioned from a wet/vegetated landscape toward drier/sparser conditions sometime between the late‐Pliocene and the late‐Pleistocene. However, our understanding of the precise timing and nature of this transition is hampered by a paucity of paleo‐records which bridge these two intervals. Here we report new plant‐wax isotope as well as dust and opal flux records from the relatively brief interval ∼1.1–1.0 million years ago (Ma) to evaluate the astronomical timescale controls of Northwest African hydroclimate and vegetation during the Mid‐Pleistocene Transition (MPT) and, in context with published records, the drivers of long‐term climate and ecological trends over the Plio‐Pleistocene. The tempo and amplitude of the Northwest African monsoon rainfall swings closely track low latitude insolation forcings over the last 5 Ma. However, we demonstrate that a pronounced mean state decline in monsoon strength likely occurred following the MPT most likely instigated by increasing Atlantic meridional sea surface temperature gradients or declines in the strength of the meridional overturning circulation. The northward extent of vegetation does not track changes in monsoon strength over the Plio‐Pleistocene and thus may be more strongly influenced by changes in monsoon rainfall extent or ecosystem disturbances. Progressively diminished dust fluxes following a decline in monsoon strength after 1.0 Ma is consistent with reduced production and subsequent depletion of fine‐grained sediments in the Sahara. Synchroneity between dust and opal fluxes across timescales suggests nutrient delivery to the surface ocean via dust plays a key role in marine primary productivity off the coast of Northwest Africa.
more »
« less
End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia
Abstract Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.
more »
« less
- Award ID(s):
- 1602947
- PAR ID:
- 10386610
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The International Ocean Discovery Program (IODP) conducted a series of expeditions between 2013 and 2016 that were designed to address thedevelopment of monsoon climate systems in Asia and Australia. Significantprogress was made in recovering Neogene sections spanning the region fromthe Arabian Sea to the Sea of Japan and southward to western Australia. Highrecovery by advanced piston corer (APC) has provided a host ofsemi-continuous sections that have been used to examine monsoonal evolution. Use of the half-length APC was successful in sampling sand-rich sediment in Indian Ocean submarine fans. The records show that humidity and seasonality developed diachronously across the region, although most regions show drying since the middle Miocene and especially since ∼ 4 Ma, likely linked to global cooling. A transition from C3 to C4 vegetation oftenaccompanied the drying but may be more linked to global cooling. WesternAustralia and possibly southern China diverge from the general trend inbecoming wetter during the late Miocene, with the Australian monsoon beingmore affected by the Indonesian Throughflow, while the Asian monsoon is tied more to the rising Himalaya in South Asia and to the Tibetan Plateau in East Asia. The monsoon shows sensitivity to orbital forcing, with many regions having a weaker summer monsoon during times of northern hemisphericGlaciation. Stronger monsoons are associated with faster continentalerosion but not weathering intensity, which either shows no trend ora decreasing strength since the middle Miocene in Asia. Marine productivityproxies and terrestrial chemical weathering, erosion, and vegetation proxiesare often seen to diverge. Future work on the almost unknown Paleogene isneeded, as well as the potential of carbonate platforms as archives ofpaleoceanographic conditions.more » « less
-
Most paleoclimate studies of Mainland Southeast Asia hydroclimate focus on the summer monsoon, with few studies investigating rainfall in other seasons. Here, we present a multiproxy stalagmite record (45,000 to 4,000 years) from central Vietnam, a region that receives most of its annual rainfall in autumn (September-November). We find evidence of a prolonged dry period spanning the last glacial maximum that is punctuated by an abrupt shift to wetter conditions during the deglaciation at ~14 ka. Paired with climate model simulations, we show that sea-level change drives autumn monsoon rainfall variability on glacial-orbital timescales. Consistent with the dry signal in the stalagmite record, climate model simulations reveal that lower glacial sea level exposes land in the Gulf of Tonkin and along the South China Shelf, reducing convection and moisture delivery to central Vietnam. When sea level rises and these landmasses flood at ~14 ka, moisture delivery to central Vietnam increases, causing an abrupt shift from dry to wet conditions. On millennial timescales, we find signatures of well-known Heinrich Stadials (HS) (dry conditions) and Dansgaard–Oeschger Events (wet conditions). Model simulations show that during the dry HS, changes in sea surface temperature related to meltwater forcing cause the formation of an anomalous anticyclone in the Western Pacific, which advects dry air across central Vietnam, decreasing autumn rainfall. Notably, sea level modulates the magnitude of millennial-scale dry and wet phases by muting dry events and enhancing wet events during periods of low sea level, highlighting the importance of this mechanism to autumn monsoon variability.more » « less
-
Most paleoclimate studies of Mainland Southeast Asia hydroclimate focus on the summer monsoon, with few studies investigating rainfall in other seasons. Here we present a multiproxy stalagmite record (45,000 – 4,000 years) from central Vietnam, a region that receives most of its annual rainfall in autumn (September-November). We find evidence of a prolonged dry period spanning the last glacial maximum that is punctuated by an abrupt shift to wetter conditions during the deglaciation at ~14ka. Paired with climate model simulations, we show that sea level change drives autumn monsoon rainfall variability on glacial-orbital timescales. Consistent with the dry signal in the stalagmite record, climate model simulations reveal that lower glacial sea level exposes land in the Gulf of Tonkin and along the South China Shelf, reducing convection and moisture delivery to central Vietnam. When sea level rises and these landmasses flood at ~14ka, moisture delivery to central Vietnam increases causing an abrupt shift from dry to wet conditions. On millennial timescales, we find signatures of well-known Heinrich Stadials (dry conditions) and Dansgaard-Oeschger Events (wet conditions). Model simulations show that during the dry Heinrich Stadials, changes in sea surface temperature related to meltwater forcing cause the formation of an anomalous anticyclone in the Western Pacific, which advects dry air across central Vietnam decreasing autumn rainfall. Notably, sea level modulates the magnitude of millennial-scale dry and wet phases by muting dry events and enhancing wet events during periods of low sea level, highlighting the importance of this mechanism to autumn monsoon variability.more » « less
-
The so-called “4.2 ka event” is a dramatic climate oscillation that impacted many areas of the mid-to-low latitudes spanning roughly 4.2-3.9 ka (ka = thousands of years ago). Records of this event have been identified on every continent except Antarctica, with clear evidence of precipitation being affected on a large scale. Subtropical and tropical regions of Africa and Asia experienced drought, while mid-latitude areas of Africa and Europe saw anomalously wet conditions. The 4.2 ka event is argued to have had a substantial cultural impact, including the collapse of numerous dynasties and cultures such as in the Indus valley and south-central China, as well as parts of Mesopotamia, northeastern Africa, and across parts of southeast Asia. However, despite its wide geographic extent and societal importance, a great deal remains unknown about the 4.2 ka event, its global effects, and its origins. The apparent lack of a climate anomaly in the polar regions at 4.2 ka suggests it may have originated in the tropics, possibly through the El Niño-Southern Oscillation (ENSO). I analyzed a stalagmite (SB-18) from Siddha Cave, located in the Pokhara Valley of central Nepal (28.0N, 84.0E elev.~600 meters), a region that receives 80% of its annual 1500 mm of rainfall from the Indian Summer Monsoon (ISM). In contrast to many tropical stalagmite records, which use oxygen isotopes to track past monsoon rainfall, I focused on carbon isotopes because at Siddha Cave, oxygen isotopes in rainfall do not have a strong correlation to rainfall amount (the so-called “amount effect”). Carbon isotopes respond to hydroclimate variability through prior aragonite precipitation (PAP), which reflects out-gassing of carbon dioxide and precipitation of aragonite in voids in the bedrock above the cave. This process preferentially removes 12C from the infiltrating water that subsequently migrates downward into the cave. During periods with less rainfall, open spaces in the bedrock are more likely to be dewatered, thereby allowing for more prior aragonite precipitation. In order to ensure that carbon isotopes accurately capture ISM rainfall variability, I also examined uranium abundances in the same stalagmite. Changes in the concentration of uranium are also driven by PAP: uranium is incorporated into aragonite preferentially over dripwater and thus PAP reduces the amount of uranium in dripwater, thereby decreasing uranium in the underlying stalagmite. Carbon isotopes and U abundances in SB-18 suggest that central Nepal experienced anomalously high rainfall during the 4.2 ka event, in contrast with the majority of lower latitude sites around the globe, including a cave record from northeastern India, that record a reduction in rainfall at this time. This rainfall dipole provides an important climatic fingerprint that allows us to investigate the origins of the 4.2 ka event through analysis of modern climate data, including rainfall anomalies associated with ENSO.more » « less
An official website of the United States government

