Most paleoclimate studies of Mainland Southeast Asia hydroclimate focus on the summer monsoon, with few studies investigating rainfall in other seasons. Here we present a multiproxy stalagmite record (45,000 – 4,000 years) from central Vietnam, a region that receives most of its annual rainfall in autumn (September-November). We find evidence of a prolonged dry period spanning the last glacial maximum that is punctuated by an abrupt shift to wetter conditions during the deglaciation at ~14ka. Paired with climate model simulations, we show that sea level change drives autumn monsoon rainfall variability on glacial-orbital timescales. Consistent with the dry signal in the stalagmite record, climate model simulations reveal that lower glacial sea level exposes land in the Gulf of Tonkin and along the South China Shelf, reducing convection and moisture delivery to central Vietnam. When sea level rises and these landmasses flood at ~14ka, moisture delivery to central Vietnam increases causing an abrupt shift from dry to wet conditions. On millennial timescales, we find signatures of well-known Heinrich Stadials (dry conditions) and Dansgaard-Oeschger Events (wet conditions). Model simulations show that during the dry Heinrich Stadials, changes in sea surface temperature related to meltwater forcing cause the formation of an anomalous anticyclone in the Western Pacific, which advects dry air across central Vietnam decreasing autumn rainfall. Notably, sea level modulates the magnitude of millennial-scale dry and wet phases by muting dry events and enhancing wet events during periods of low sea level, highlighting the importance of this mechanism to autumn monsoon variability.
more »
« less
Glacial changes in sea level modulated millennial-scale variability of Southeast Asian autumn monsoon rainfall
Most paleoclimate studies of Mainland Southeast Asia hydroclimate focus on the summer monsoon, with few studies investigating rainfall in other seasons. Here, we present a multiproxy stalagmite record (45,000 to 4,000 years) from central Vietnam, a region that receives most of its annual rainfall in autumn (September-November). We find evidence of a prolonged dry period spanning the last glacial maximum that is punctuated by an abrupt shift to wetter conditions during the deglaciation at ~14 ka. Paired with climate model simulations, we show that sea-level change drives autumn monsoon rainfall variability on glacial-orbital timescales. Consistent with the dry signal in the stalagmite record, climate model simulations reveal that lower glacial sea level exposes land in the Gulf of Tonkin and along the South China Shelf, reducing convection and moisture delivery to central Vietnam. When sea level rises and these landmasses flood at ~14 ka, moisture delivery to central Vietnam increases, causing an abrupt shift from dry to wet conditions. On millennial timescales, we find signatures of well-known Heinrich Stadials (HS) (dry conditions) and Dansgaard–Oeschger Events (wet conditions). Model simulations show that during the dry HS, changes in sea surface temperature related to meltwater forcing cause the formation of an anomalous anticyclone in the Western Pacific, which advects dry air across central Vietnam, decreasing autumn rainfall. Notably, sea level modulates the magnitude of millennial-scale dry and wet phases by muting dry events and enhancing wet events during periods of low sea level, highlighting the importance of this mechanism to autumn monsoon variability.
more »
« less
- PAR ID:
- 10427855
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 27
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We reconstructed hydroclimate variability in the Yucatán Peninsula (YP) based on stalagmite oxygen and carbon isotope records from a well-studied cave system located in the northeastern YP, a region strongly influenced by Caribbean climate dynamics. The new stalagmite isotopic records span the time interval between 43 and 26.6 ka BP, extending a previously published record from the same cave system covering the interval between 26.5 and 23.2 ka BP. Stalagmite stable isotope records show dominant decadal and multidecadal variability, and weaker variability on millennial timescales. These records suggest significant precipitation declines in the broader Caribbean region during Heinrich events 4 and 3 of ice-rafted discharge into the North Atlantic, in agreement with the antiphase pattern of precipitation variability across the equator suggested by previous studies. On millennial timescales, the stalagmite isotope records do not show the distinctive saw-tooth pattern of climate variability observed in Greenland during Dansgaard–Oeschger (DO) events, but a pattern similar to North Atlantic sea surface temperature (SST) variability. We propose that shifts in the mean position of the Intertropical Convergence Zone (ITCZ), per se, are not the dominant driver of last glacial hydroclimate variability in the YP on millennial timescales but instead that North Atlantic SSTs played a dominant role. Our results support a negative climate feedback mechanism whereby large low latitude precipitation deficits resulting from AMOC slowdown would lead to elevated salinity in the Caribbean and ultimately help reactivate AMOC and Caribbean precipitation. However, because of the unique drivers of future climate in the region, predicted twenty-first century YP precipitation reductions are unlikely to be modulated by this negative feedback mechanism.more » « less
-
Glacial-interglacial transitions and abrupt millennial-scale events are the most prominent features in many paleoclimate records. Understanding these oscillations requires high-resolution time series from multiple locations to constrain the latitudinal response to forcings. Few high-resolution records exist from the Southern Hemisphere tropics that predate the last two glaciations. We present a high-resolution speleothem oxygen and carbon isotope record from Huagapo Cave in the Central Peruvian Andes covering Marine Isotope Stage (MIS) 8 glacial and MIS 9 interglacial (339 to 249 ka). Uranium-series dates on three stalagmites (n=18) with small age uncertainty ±1% allows us to resolve abrupt climate events similar in structure and duration to Dansgaard-Oescchger and Heinrich events. The South American Summer Monsoon (SASM) controls modern hydroclimate variability in the Andes, and previous records from Huagapo Cave have provided records of past SASM variability. Termination three (T-III) in our record has a steep increase in δ18O values of 5‰, punctuated by two stadial event decreases of ~3‰ (S8.1 and S8.2). This pattern is mirrored in the δ13C record, indicating that these millennial-scale events record hydroclimate and vegetation productivity changes. The same structure as our T-III record is found in other records globally, where they are noted to be Heinrich-like events. Frequency analysis indicates that the occurrence of these abrupt events changes between glacial cycles. Precession is weakly expressed in the δ18O record during MIS 8; similar to speleothem records from the region dating to the Last Glacial Maximum (LGM). Global ice cover and sea levels were similar in the LGM and MIS 8, but the Milankovitch insolation forcing differed. This change in SASM behavior is not observed in the East Asian monsoon, where the precession signal is dominant throughout. Interglacial precessional control is apparent during the latter half of MIS 9 and during Huagapo Cave intervals dating to MIS 6 and 7. These data indicate that the response to high-latitude forcing in the Southern Hemisphere tropics fluctuates through time, and potential explanations for low-latitude sensitivity to forcing factors are further explored.more » « less
-
none (Ed.)Abstract The termination of the last glacial period is marked by the northward migration of the ITCZ and the weakening of the South American Summer Monsoon (SASM). The transition between the wetter glacial period and the more arid Holocene period across the South American continent is punctuated by several abrupt millennial-scale tropical hydroclimatic events. While the Northern Hemisphere temperature forcing of these millennial-scale events is generally accepted, recently, equatorial forcing mechanisms have been put forward. In particular, the dipole between northeastern Brazil and the western Andes of Peru is absent during Heinrich 1, with wet conditions recorded in both regions. To explain this anomalous atmospheric behavior, researchers have suggested changes in the ENSO and Walker circulation over South America and questioned whether the ‘amount effect’ relationship between δ18O and precipitation persists through time. To better resolve tropical hydroclimate changes over the last glacial termination, more robust paleoclimate proxies are needed. Here, we present a new paleo-precipitation reconstruction based on trace metal (Mg/Ca, Sr/Ca, and Ba/Ca) and isotope (δ18O and δ13C) speleothem records from Antipayarguna cave in the Peruvian Andes (3800 masl). Our records date from 2,600 to 4,700 and 7,700 to 19,000 years BP, with an average age resolution of 44 years. These records overlap the previously published speleothem records from nearby Pacupahuain and Huagapo caves. The Antipayarguna δ18O data are highly correlated with southern hemisphere summer insolation and the Huascaran ice core δ18O record. The Antipayarguna trace metal ratios and δ18O isotope values correlate well over most of the record, suggesting that the δ18O at our site reflects the amount of local precipitation. However, at the end of the Younger Dryas (11.5-10.3 ka) and Heinrich Stadial 1 (16.4-14.9 ka), there is a decoupling of these proxies. These anomalies may be due to changes in δ18O caused by shifts in moisture source region or precipitation condensation factors (e.g. convergence level or subcloud evaporation). Alternatively, this could be due to a change in trace metal sources. We explore potential causes for these brief decoupling events through comparison with other paleoclimate records.more » « less
-
Rainwater isotopes in central Vietnam controlled by two oceanic moisture sources and rainout effectsAbstract The interpretation of palaeoclimate archives based on oxygen isotopes depends critically on a detailed understanding of processes controlling the isotopic composition of precipitation. In the summer monsoonal realm, like Southeast Asia, seasonally and interannually depleted oxygen isotope ratios in precipitation have been linked to the summer monsoon strength. However, in some regions, such as central Vietnam, the majority of precipitation falls outside the summer monsoon period. We investigate processes controlling stable isotopes in precipitation from central Vietnam by combining moisture uptake calculations with monthly stable isotope data observed over five years. We find that the isotopic seasonal cycle in this region is driven by a shift in moisture source from the Indian Ocean to the South China Sea. This shift is reflected in oxygen isotope ratios with low values (− 8 to − 10‰) during summer and high values during spring/winter (0 to − 3‰), while 70% of the annual rainfall occurs during autumn. Interannual changes in precipitation isotopes in central Vietnam are governed by the timing of the seasonal onset and withdrawal of the Intertropical Convergence Zone, which controls the amount of vapour contributed from each source.more » « less
An official website of the United States government

