skip to main content


Title: Low‐Damping Spin‐Wave Transmission in YIG/Pt‐Interfaced Structures
Abstract

Magnetic heterostructures consisting of single‐crystal yttrium iron garnet (YIG) films coated with platinum are widely used in spin‐wave experiments related to spintronic phenomena such as the spin‐transfer‐torque, spin‐Hall, and spin‐Seebeck effects. However, spin waves in YIG/Pt bilayers experience much stronger attenuation than in bare YIG films. For micrometer‐thick YIG films, this effect is caused by microwave eddy currents in the Pt layer. This paper reports that by employing an excitation configuration in which the YIG film faces the metal plate of the microstrip antenna structure, the eddy currents in Pt are shunted and the transmission of the Damon–Eschbach surface spin wave is greatly improved. The reduction in spin‐wave attenuation persists even when the Pt coating is separated from the ground plate by a thin dielectric layer. This makes the proposed excitation configuration suitable for injection of an electric current into the Pt layer and thus for application in spintronics devices. The theoretical analysis carried out within the framework of the electrodynamic approach reveals how the platinum nanolayer and the nearby highly conductive metal plate affect the group velocity and the lifetime of the Damon–Eshbach surface wave and how these two wavelength‐dependent quantities determine the transmission characteristics of the spin‐wave device.

 
more » « less
Award ID(s):
2138236
NSF-PAR ID:
10386731
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
9
Issue:
36
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spin thermoelectrics represents a new paradigm of thermoelectricity that has a potential to overcome the fundamental limitation posed by the Wiedmann-Franz law on the efficiency of conventional thermoelectric devices. A typical spin thermoelectric device consists of a bilayer of a magnetic insulator and a high spin-orbit coupling (SOC) metal coated over a non-magnetic substrate. Pt is the most commonly used metal in spin thermoelectric devices due to its strong SOC. In this paper, we found that an alloy of Cu and Pt can perform much better than Pt in spin thermoelectric devices. A series of CuPt alloy films with different Pt concentrations were deposited on yttrium iron garnet (YIG) films coated gadolinium gallium garnet (GGG) substrate. Through spin Seebeck measurements, it was found that the Cu0.4Pt0.6/YIG/GGG device shows almost 3 times higher spin Seebeck voltage compared to Pt/YIG/GGG under identical conditions. The improved performance was attributed to the higher resistivity as well as enhanced spin hall angle of the CuPt layer.

     
    more » « less
  2. Abstract

    Spin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin‐wave propagation needed for information processing devices. The organic‐based magnet [V(TCNE)x; TCNE = tetracyanoethylene;x≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non‐coherent spin waves on various modes in V(TCNE)xis demonstrated and show that the angular momentum carried by microwave‐excited coherent spin waves in a V(TCNE)xfilm can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect. The spin pumping efficiency can be tuned by choosing different excited spin wave modes in the V(TCNE)xfilm. In addition, it is shown that non‐coherent spin waves in a V(TCNE)xfilm, excited thermally via the spin Seebeck effect, can also be used as spin pumping source that generates an electrical signal in Pt with a sign change in accordance with the magnetization switching of the V(TCNE)x. Combining coherent and non‐coherent spin wave detection, the spin pumping efficiency can be thermally controlled, and new insight is gained for the spintronic applications of spin wave modes in organic‐based magnets.

     
    more » « less
  3. Abstract

    All‐optical control and detection of magnetic states for high‐density recording necessitate nanophotonic approaches to amplify local light intensity below the diffraction limit. Sculpting the near‐field phase and polarization can additionally strengthen magneto‐optical effects that rely on circularly polarized pulses, such as all‐optical helicity‐dependent switching, imaging, and spin‐wave excitation. Here, high‐refractive‐index dielectric nanoantennas illuminated with circularly polarized light resonantly enhance local electric field rotation by more than sixfold within [Pt/Co]Nthin films. Sub‐wavelength arrays of amorphous Si nanodisks, or metasurfaces, patterned on perpendicularly magnetized films support Mie‐type resonances that modulate reflection and transmission dissymmetry by >±2% in experiments. Spatial and spectral interference between dipolar modes, proximity effects, and gain are evaluated by varying disk aspect ratio, metasurface–metal separation, and magnetic film thickness, respectively. Simulated enhancements in magnetic circular birefringence and differential absorption are correlated with amplified local field rotation at electric dipolar modes. Greater achievable amplifications are shown via simulations with single‐crystalline Si metasurfaces exhibiting lower losses, including a 12‐fold strengthened electric field rotation within ferromagnetic layers. The metasurface design rules established here could enable nanoscale localization of all‐optical magnetic switching with lowered laser fluence thresholds, as well as enhanced magneto‐optical responses for light‐assisted reading in spintronic devices.

     
    more » « less
  4. Abstract

    Air–sea momentum and scalar fluxes are strongly influenced by the coupling dynamics between turbulent winds and a spectrum of waves. Because direct field observations are difficult, particularly in high winds, many modeling and laboratory studies have aimed to elucidate the impacts of the sea state and other surface wave features on momentum and energy fluxes between wind and waves as well as on the mean wind profile and drag coefficient. Opposing wind is common under transient winds, for example, under tropical cyclones, but few studies have examined its impacts on air–sea fluxes. In this study, we employ a large-eddy simulation for wind blowing over steep sinusoidal waves of varying phase speeds, both following and opposing wind, to investigate impacts on the mean wind profile, drag coefficient, and wave growth/decay rates. The airflow dynamics and impacts rapidly change as the wave age increases for waves following wind. However, there is a rather smooth transition from the slowest waves following wind to the fastest waves opposing wind, with gradual enhancement of a flow perturbation identified by a strong vorticity layer detached from the crest despite the absence of apparent airflow separation. The vorticity layer appears to increase the effective surface roughness and wave form drag (wave attenuation rate) substantially for faster waves opposing wind.

    Significance Statement

    Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in the opposite direction using large-eddy simulation. We find that when waves oppose wind, they decay as expected, but also increase the surface friction much more drastically than when waves follow wind. This finding has important implications for how waves opposing wind are represented as a source of surface friction in forecast models.

     
    more » « less
  5. Spin-to-charge conversion and the reverse process are now critically important physical processes for a wide range of fundamental and applied studies in spintronics. Here, we experimentally demonstrate effective spin-to-charge conversion in thermally evaporated chromium thin films using the longitudinal spin Seebeck effect (LSSE). We present LSSE results measured near room temperature for Cr films with thicknesses from 2 to 11 nm, deposited at room temperature on bulk polycrystalline yttrium-iron-garnet (YIG) substrates. Comparison of the measured LSSE voltage, [Formula: see text], in Cr to a sputtered Pt film at the same nominal thickness grown on a matched YIG substrate shows that both films show comparably large spin-to-charge conversion. As previously shown for other forms of Cr, the LSSE signal for evaporated Cr/YIG shows the opposite sign compared to Pt, indicating that Cr has a negative spin Hall angle, [Formula: see text]. We also present measured charge resistivity, [Formula: see text], of the same evaporated Cr films on YIG. These values are large compared to Pt and comparable to [Formula: see text]-W at a similar thickness. Non-monotonic behavior of both [Formula: see text] and [Formula: see text] with film thickness suggests that spin-to-charge conversion in evaporated Cr, which we expect has a different strain state than previously investigated sputtered films, could be modified by spin density wave antiferromagnetism in Cr.

     
    more » « less