skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainty and Bias of Cosmology and Astrophysical Population Model from Statistical Dark Sirens
Abstract Gravitational-wave (GW) radiation from a coalescing compact binary is a standard siren, as the luminosity distance of each event can be directly measured from the amplitude of the signal. One possibility to constrain cosmology using the GW siren is to perform statistical inference on a population of binary black hole (BBH) events. In essence, this statistical method can be viewed as follows. We can modify the shape of the distribution of observed BBH events by changing the cosmological parameters until it eventually matches the distribution constructed from an astrophysical population model, thereby allowing us to determine the cosmological parameters. In this work, we derive the Cramér–Rao bound for both cosmological parameters and those governing the astrophysical population model from this statistical dark siren method by examining the Fisher information contained in the event distribution. Our study provides analytical insights and enables fast yet accurate estimations of the statistical accuracy of dark siren cosmology. Furthermore, we consider the bias in cosmology due to unmodeled substructures in the merger rate and mass distribution. We find that a 1% deviation in the astrophysical model can lead to a more than 1% error in the Hubble constant. This could limit the accuracy of dark siren cosmology when there are more than 104BBH events detected.  more » « less
Award ID(s):
2309231 2011961 1836809
PAR ID:
10386840
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 174
Size(s):
Article No. 174
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a detailed exposition of a statistical method for estimating cosmological parameters from the observation of a large number of strongly lensed binary-black-hole (BBH) mergers observable by next (third) generation (XG) gravitational-wave (GW) detectors. This method, first presented in Jana (2023Phys. Rev. Lett.130261401), compares the observed number of strongly lensed GW events and their time delay distribution (between lensed images) with observed events to infer cosmological parameters. We show that the precision of the estimation of the cosmological parameters does not have a strong dependance on the assumed BBH redshift distribution model. Using the large number of unlensed mergers, XG detectors are expected to measure the BBH redshift distribution with sufficient precision for the cosmological inference. However, a biased inference of the BBH redshift distribution will bias the estimation of cosmological parameters. An incorrect model for the distribution of lens properties can also lead to a biased cosmological inference. However, Bayesian model selection can assist in selecting the right model from a set of available parametric models for the lens distribution. We also present a way to incorporate the effect of contamination in the data due to the limited efficiency of lensing identification methods, so that it will not bias the cosmological inference. 
    more » « less
  2. Abstract Gravitational waves (GWs) from merging compact objects encode direct information about the luminosity distance to the binary. When paired with a redshift measurement, this enables standard-siren cosmology: a Hubble diagram can be constructed to directly probe the Universe’s expansion. This can be done in the absence of electromagnetic measurements, as features in the mass distribution of GW sources provide self-calibrating redshift measurements without the need for a definite or probabilistic host galaxy association. This “spectral siren” technique has thus far only been applied with simple parametric representations of the mass distribution, and theoretical predictions for features in the mass distribution are commonly presumed to be fundamental to the measurement. However, the use of an inaccurate representation leads to biases in the cosmological inference, an acute problem given the current uncertainties in true source population. Furthermore, it is commonly presumed that the form of the mass distribution must be known a priori to obtain unbiased measurements of cosmological parameters in this fashion. Here, we demonstrate that spectral sirens can accurately infer cosmological parameters without such prior assumptions. We apply a flexible, nonparametric model for the mass distribution of compact binaries to a simulated catalog of 1000 GW signals, consistent with expectations for the next LIGO–Virgo–KAGRA observing run. We find that, despite our model’s flexibility, both the source mass model and cosmological parameters are correctly reconstructed. We predict a 11.2%✎measurement ofH0, keeping all other cosmological parameters fixed, and a 6.4%✎measurement ofH(z= 0.9)✎when fitting for multiple cosmological parameters (1σuncertainties). This astrophysically agnostic spectral siren technique will be essential to arrive at precise and unbiased cosmological constraints from GW source populations. 
    more » « less
  3. Abstract The detection of GW170817 and the measurement of its redshift from the associated electromagnetic counterpart provided the first gravitational-wave (GW) determination of the Hubble constant (H0), demonstrating the potential power of standard siren cosmology. In contrast to this “bright siren” approach, the “dark siren” approach can be utilized for GW sources in the absence of an electromagnetic counterpart: One considers all galaxies contained within the localization volume as potential hosts. When statistically averaging over the potential host galaxies, weighting them by physically motivated properties (e.g., tracing star formation or stellar mass) could improve convergence. Using mock galaxy catalogs, we explore the impact of these weightings on the measurement ofH0. We find that incorrect weighting schemes can lead to significant biases due to two effects: the assumption of an incorrect galaxy redshift distribution, and preferentially weighting incorrect host galaxies during the inference. The magnitudes of these biases are influenced by the number of galaxies along each line of sight, the measurement uncertainty in the GW luminosity distance, and correlations in the parameter space of galaxies. We show that the bias may be overcome from improved localization constraints in future GW detectors, a strategic choice of priors or weighting prescription, and by restricting the analysis to a subset of high-signal-to-noise ratio events. We propose the use of hierarchical inference as a diagnostic of incorrectly weighted prescriptions. Such approaches can simultaneously infer the correct weighting scheme and the values of the cosmological parameters, thereby mitigating the bias in dark siren cosmology due to incorrect host-galaxy weighting. 
    more » « less
  4. Abstract We outline the “dark siren” galaxy catalog method for cosmological inference using gravitational wave (GW) standard sirens, clarifying some common misconceptions in the implementation of this method. When a confident transient electromagnetic counterpart to a GW event is unavailable, the identification of a unique host galaxy is in general challenging. Instead, as originally proposed by Schutz, one can consult a galaxy catalog and implement a dark siren statistical approach incorporating all potential host galaxies within the localization volume. Trott & Huterer recently claimed that this approach results in a biased estimate of the Hubble constant, H 0 , when implemented on mock data, even if optimistic assumptions are made. We demonstrate explicitly that, as previously shown by multiple independent groups, the dark siren statistical method leads to an unbiased posterior when the method is applied to the data correctly. We highlight common sources of error possible to make in the generation of mock data and implementation of the statistical framework, including the mismodeling of selection effects and inconsistent implementations of the Bayesian framework, which can lead to a spurious bias. 
    more » « less
  5. Abstract It has been proposed that some black holes (BHs) in binary black hole (BBH) systems are born from “hierarchical mergers” (HMs), i.e., earlier mergers of smaller BHs. These HM products have spin magnitudes χ ∼ 0.7, and, if they are dynamically assembled into BBH systems, their spin orientations will sometimes be antialigned with the binary orbital angular momentum. In fact, as Baibhav et al. showed, ∼16% of BBH systems that include HM products will have an effective inspiral spin parameter, χ eff < −0.3. Nevertheless, the LIGO–Virgo–KAGRA (LVK) gravitational-wave (GW) detectors have yet to observe a BBH system with χ eff ≲ −0.2, leading to upper limits on the fraction of HM products in the population. We fit the astrophysical mass and spin distribution of BBH systems and measure the fraction of BBH systems with χ eff < −0.3, which implies an upper limit on the HM fraction. We find that fewer than 26% of systems in the underlying BBH population include HM products (90% credibility). Even among BBH systems with primary masses m 1 = 60 M ⊙ , the HM fraction is less than 69%, which may constrain the location of the pair-instability mass gap. With 300 GW events (to be expected in the LVK’s next observing run), if we fail to observe a BBH with χ eff < −0.3, we can conclude that the HM fraction is smaller than 2.5 − 2.2 + 9.1 % . 
    more » « less