skip to main content


Search for: All records

Award ID contains: 2011961

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Gravitational-wave (GW) radiation from a coalescing compact binary is a standard siren, as the luminosity distance of each event can be directly measured from the amplitude of the signal. One possibility to constrain cosmology using the GW siren is to perform statistical inference on a population of binary black hole (BBH) events. In essence, this statistical method can be viewed as follows. We can modify the shape of the distribution of observed BBH events by changing the cosmological parameters until it eventually matches the distribution constructed from an astrophysical population model, thereby allowing us to determine the cosmological parameters. In this work, we derive the Cramér–Rao bound for both cosmological parameters and those governing the astrophysical population model from this statistical dark siren method by examining the Fisher information contained in the event distribution. Our study provides analytical insights and enables fast yet accurate estimations of the statistical accuracy of dark siren cosmology. Furthermore, we consider the bias in cosmology due to unmodeled substructures in the merger rate and mass distribution. We find that a 1% deviation in the astrophysical model can lead to a more than 1% error in the Hubble constant. This could limit the accuracy of dark siren cosmology when there are more than 104BBH events detected.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Abstract Detectable electromagnetic counterparts to gravitational waves from compact binary mergers can be produced by outflows from the black hole-accretion disk remnant during the first 10 s after the merger. Two-dimensional axisymmetric simulations with effective viscosity remain an efficient and informative way to model this late-time post-merger evolution. In addition to the inherent approximations of axisymmetry and modeling turbulent angular momentum transport by a viscosity, previous simulations often make other simplifications related to the treatment of the equation of state and turbulent transport effects. In this paper, we test the effect of these modeling choices. By evolving with the same viscosity the exact post-merger initial configuration previously evolved in Newtonian viscous hydrodynamics, we find that the Newtonian treatment provides a good estimate of the disk ejecta mass but underestimates the outflow velocity. We find that the inclusion of heavy nuclei causes a notable increase in ejecta mass. An approximate inclusion of r-process effects has a comparatively smaller effect, except for its designed effect on the composition. Diffusion of composition and entropy, modeling turbulent transport effects, has the overall effect of reducing ejecta mass and giving it a speed with lower average and more tightly-peaked distribution. Also, we find significant acceleration of outflow even at distances beyond 10 000 km, so that thermal wind velocities only asymptote beyond this radius and at higher values than often reported. 
    more » « less