skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperatures in the Upper Mesosphere and Lower Thermosphere from O2 Atmospheric Band Emission Observed by ICON/MIGHTI
Abstract The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) was launched aboard NASA’s Ionospheric Connection (ICON) Explorer satellite in October 2019 to measure winds and temperatures on the limb in the upper mesosphere and lower thermosphere (MLT). Temperatures are observed using the molecular oxygen atmospheric band near 763 nm from 90–127 km altitude in the daytime and 90–108 km in the nighttime. Here we describe the measurement approach and methodology of the temperature retrieval, including unique on-orbit operations that allow for a better understanding of the instrument response. The MIGHTI measurement approach for temperatures is distinguished by concurrent observations from two different sensors, allowing for two self-consistent temperature products. We compare the MIGHTI temperatures against existing MLT space-borne and ground-based observations. The MIGHTI temperatures are within 7 K of these observations on average from 90–95 km throughout the day and night. In the daytime on average from 99–105 km, MIGHTI temperatures are higher than coincident observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA’s TIMED satellite by 18 K. Because the difference between the MIGHTI and SABER observations is predominantly a constant bias at a given altitude, conclusions of scientific analyses that are based on temperature variations are largely unaffected.  more » « less
Award ID(s):
1954308 2125712
PAR ID:
10386928
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Space Science Reviews
Volume:
218
Issue:
8
ISSN:
0038-6308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Local full diurnal coverage of temperature variations across the turbopause (∼90–115 km altitude) is achieved by combining the nocturnal observations of a Sodium (Na) Doppler lidar on the Utah State University (USU) campus (41.7°N, 248.2°E) and NASA Michelson interferometer for global high‐resolution thermospheric imaging (MIGHTI)/Ionospheric connection explorer (ICON) daytime observations made in the same vicinity. In this study, utilizing this hybrid data set during summer 2020 between June 12th and July 15th, we retrieve the temperature signatures of diurnal and semidiurnal tides in this region. The tidal amplitudes of both components have similar vertical variation with increasing altitude: less than 5 K below ∼98 km but increase considerably above, up to 19 K near 104 km. Both experience significant dissipation near turbopause altitudes, down to ∼12 K up to 113 km for the diurnal tide and ∼13 K for the semidiurnal tide near 110 km. In addition, while the semidiurnal tidal behavior is consistent with the theoretical predictions, the diurnal amplitude is considerably larger than what is expected in the turbopause region. The tidal phase profile shows a dominance of tidal components with a long vertical wavelength (longer than 40 km) for the semidiurnal tide. On the other hand, the diurnal tide demonstrates close to an evanescent wave behavior in the turbopause region, which is absent in the model results and Thermosphere ionosphere mesosphere energetics and dynamics (TIMED)/Sounding of the atmosphere using broadband radiometry (SABER) observations. 
    more » « less
  2. Abstract Rotational temperatures in the Mesosphere‐Lower Thermosphere region are estimated by utilizing the OH(6,2) Meinel band nightglow data obtained with an Ebert‐Fastie spectrometer (EFS) operated at Arecibo Observatory (AO), Puerto Rico (18.35°N, 66.75°W) during February‐April 2005. To validate the estimated rotational temperatures, a comparison with temperatures obtained from a co‐located Potassium Temperature Lidar (K‐Lidar) and overhead passes of the Sounding of the Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite is performed. Two types of weighting functions are applied to the K‐Lidar temperature profiles to compare them with EFS temperatures. The first type has a fixed peak altitude and a fixed full width at half maximum (FWHM) for the whole night. In the second type, the peak altitude and FWHM vary with the local time. SABER measurements are utilized to estimate the OH(6,2) band peak altitudes and FWHMs as a function of local time and considerable temporal variations are observed in both the parameters. The average temperature differences between the EFS and K‐Lidar obtained with both types of weighting functions are comparable with previously published results from different latitude‐longitude sectors. We found that the temperature comparison improves when the time‐varying weighting functions are considered. Comparison between EFS, K‐Lidar, and SABER temperatures reveal that on average, SABER temperatures are lower than the other two instruments and K‐Lidar temperatures compare better with SABER in comparison to EFS. Such a detailed study using the AO EFS data has not been carried out previously. 
    more » « less
  3. Abstract Meteor radar observations provide wind data ranging from 80 to 100 km altitude, while the Michaelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) onboard the Ionospheric Connection Explorer satellite offers wind data above 90 km altitude. This study aims to generate wind profiles in the mesosphere and lower thermosphere by combining the winds derived from meteor radar and MIGHTI observations over the Korean Peninsula from January 2020 to December 2021. The wind profiles derived from the two instruments are continuous at night, but they show discrepancies during the day. The atomic oxygen 557.7 nm (green line) emission intensity measured by MIGHTI peaks at approximately 100 km during the day and 94 km at night. The vertical gradient of the airglow volume emission rate is more pronounced during the day. These differences can cause day‐night differences in the MIGHTI wind retrieval accuracy, potentially leading to discrepancies during the day. 
    more » « less
  4. Abstract This article presents the results of a week of observations around the 2 July 2019, total Chilean eclipse. The eclipse occurred between 19:22 and 21:46 UTC, with complete sun disc obscuration at 20:38–20:40 UTC (16:38–16:40 LT) over the Andes Lidar Observatory (ALO) at (30.3°S, 70.7°W). Observations were carried out using ALO instrumentation with the goal to observe possible eclipse‐induced effects on the mesosphere and lower thermosphere region (MLT; 75–105 km altitude). To complement our data set, we have also utilized TIMED/SABER temperatures and ionosonde electron density measurements taken at the University of La Serena's Juan Soldado Observatory. Observed events include an unusual fast, bow‐shaped gravity wave structure in airglow images, mesosphere temperature mapper brightness as well as in lidar temperature with 150 km horizontal wavelength 24 min observed period, and vertical wavelength of 25 km. Also, a strong zonal wind shear above 100 km in meteor radar scans as well as the occurrence of a sporadic E layer around 100 km from ionosonde measurements. Finally, variations in temperature and density and the presence of a descending sporadic sodium layer near 98 km were seen in lidar data. We discuss the effects of the eclipse in the MLT, which can shed light on a sparse set of measurements during this type of event. Our results point out several effects of eclipse‐associated changes in the atmosphere below and above but not directly within the MLT. 
    more » « less
  5. Abstract Recent evidence has revealed that strong coupling between the lower atmosphere and the thermosphere (100 km) occurs on intra‐seasonal (IS) timescales ( 30–90 days). The Madden‐Julian Oscillation (MJO), a key source of IS variability in tropical convection and circulation, influences the generation and propagation of atmospheric tides and is believed to be a significant driver of thermospheric IS oscillations (ISOs). However, limited satellite observations in the “thermospheric gap” (100–300 km) and challenges faced by numerical models in characterizing this region have hindered a comprehensive understanding of this connection. This study uses an Ionospheric Connection Explorer (ICON)‐adapted version of the Thermosphere Ionosphere Electrodynamics General Circulation Model, incorporating lower boundary tides from Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) observations, to quantify the impact of the upward‐propagating tidal spectrum on thermospheric ISOs and elucidate connections to the MJO. Thermospheric zonal and diurnal mean zonal winds exhibit prominent ( 20 m/s) tidally driven ISOs throughout 2020–2021, largest at low latitudes near 110–150 km altitude. Correlation analyses confirm a robust connection between thermospheric ISOs, tides, and the MJO. Additionally, Hovmöller diagrams show eastward tidal propagation consistent with the MJO and concurrent Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. This study demonstrates that vertically propagating tides play a crucial role in linking IS variability from the lower atmosphere to the thermosphere, with the MJO identified as a primary driver of this whole‐atmosphere teleconnection. Understanding these connections is vital for advancing our knowledge in space physics, particularly regarding the dynamics of the upper atmosphere and ionosphere. 
    more » « less