skip to main content


Title: Interspecific variation in resistance and tolerance to herbicide drift reveals potential consequences for plant community coflowering interactions and structure at the agro-eco interface
Abstract Background and Aims When plant communities are exposed to herbicide ‘drift’, wherein particles containing the active ingredient travel off-target, interspecific variation in resistance or tolerance may scale up to affect community dynamics. In turn, these alterations could threaten the diversity and stability of agro-ecosystems. We investigated the effects of herbicide drift on the growth and reproduction of 25 wild plant species to make predictions about the consequences of drift exposure on plant-plant interactions and the broader ecological community. Methods We exposed potted plants from species that commonly occur in agricultural areas to a drift-level dose of the widely used herbicide dicamba or a control solution in the glasshouse. We evaluated species-level variation in resistance and tolerance for vegetative and floral traits. We assessed community-level impacts of drift by comparing species evenness and flowering networks of glasshouse synthetic communities comprised of drift-exposed and control plants. Key Results Species varied significantly in resistance and tolerance to dicamba drift: some were negatively impacted while others showed overcompensatory responses. Species also differed in the way they deployed flowers over time following drift exposure. While drift had negligeable effects on community evenness based on vegetative biomass, it caused salient differences in the structure of coflowering networks within communities. Drift reduced the degree and intensity of flowering overlap among species, altered the composition of groups of species that were more likely to coflower with each other than with others, and shifted species roles (e.g., from dominant to inferior floral producers and vice versa). Conclusions These results demonstrate that even low levels of herbicide exposure can significantly alter plant growth and reproduction, particularly flowering phenology. If field-grown plants respond similarly, then these changes would likely impact plant-plant competitive dynamics and potentially plant-pollinator interactions occurring within plant communities at the agro-ecological interface.  more » « less
Award ID(s):
1834688
NSF-PAR ID:
10386940
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annals of Botany
ISSN:
0305-7364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.

    Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.

    HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.

    Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities.

     
    more » « less
  2. Abstract

    Pollinator sharing often leads to receipt of heterospecific pollen (HP) along with conspecific pollen. As a result, flowering plants can accumulate diverse communities of HP on stigmas. While variation in HP diversity is an important selective force contributing to flowering plant fitness, evolution and community assembly, our understanding of the extent and drivers of heterogeneity of HP diversity is limited.

    In this study, we examined the species compositions and abundances of ~1000 HP communities across 59 co‐flowering plant species in three serpentine seep communities in California, USA. We evaluated the variation in HP diversity (γ diversity) across plant species in each seep and asked whether the variation in HP γ diversity was caused by variation in HP diversity within stigmas (α diversity) or HP compositional variation among stigmas (β diversity) due to the replacement of HP species (turnover) or their loss (nestedness) from one stigma to another. We further evaluated the potential drivers of variation in HP α and β diversity using phylogenetic structural equation models.

    We found that variation in HP γ diversity across plant species was driven strongly by differences among species in HP α diversity and to a lesser extent by HP β diversity. HP community turnover contributed more to HP β diversity than nestedness consistently across plant species and seeps, suggesting a general pattern of HP compositional heterogeneity from stigma to stigma. The phylogenetic structural equation models further revealed that floral traits (e.g., stigma area, stigma‐anther distance, stigma exposure) and floral abundance were key in determining HP α diversity by influencing HP abundance (load size), while floral traits and abundance showed variable impact on HP β diversity (turnover and nestedness). Pollination generalism contributed relatively less to HP‐α and β diversity.

    These findings disentangle the heterogeneity in HP diversity at different levels, which is essential for understanding the process underlying patterns of HP receipt in plant communities. That floral traits drive the heterogeneity in HP diversity points to additional avenues by which HP receipt may contribute to plant evolution.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    Lianas and other climbing plants are structural parasites of trees, generally reducing host tree survival, growth, and reproduction, yet their influences on the outcome of competition among tree species have remained largely unexplored.

    We propose that there are three distinct components to liana–tree interactions:prevalence, defined as the proportion of infested trees;load, defined as the mean liana cover on infested trees; andtolerance, defined as the effect of a given level of infestation on tree population growth rates. We introduce a new metric that integrates these components, the lianaburden, defined as the total effect of lianas on per capita population growth rates given current prevalence, load, and tolerance. Using these metrics, we quantify variation among 33 co‐occurring tropical tree species in liana–tree interactions and its relation with shade‐tolerance.

    The focal tree species vary strongly in liana prevalence, load, tolerance, and burden. Interspecific variation in tolerance is the largest contributor to interspecific variation in burden. Species rankings of per capita population growth rates under current liana infestation levels differ somewhat from rankings under liana‐free conditions, and differ strongly from rankings under uniformly high liana infestation. Thus, lianas alter competitive hierarchies to benefit tree species that are relatively tolerant of and/or resistant to lianas. Among the focal tree species, shade‐tolerance is positively correlated with liana tolerance and prevalence, but largely unrelated to load and burden, meaning shade‐tolerance does not predict which species are competitively disadvantaged by lianas. We describe a variety of mechanisms by which lianas may potentially increase or decrease niche differences among tree species, including interactions with spatial and temporal environmental niche partitioning, and potential differences among tree species in relative vulnerability to different liana species.

    Synthesis. Lianas, like other natural enemies, can in principle alter competitive hierarchies and niche structure of co‐occurring tree species, and our analyses suggest such influences are substantial in our focal tropical tree community and likely many other tree communities as well. Quantifying these effects requires a more comprehensive approach including analyses and modelling of dynamics of liana–tree interactions and their variation with tree and liana species identities.

     
    more » « less
  4. Herbicides act as human-mediated novel selective agents and community disruptors, yet their full effects on eco-evolutionary dynamics in natural communities has only begun to be appreciated. Here we synthesize how herbicide exposures can result in dramatic phenotypic and compositional shifts within communities at the agro-ecological interface and how these in turn affect species interactions and drive plant (and plant-associates’) evolution in ways that can feedback to continue to affect the ecology and ecosystem functions of these assemblages. We advocate a holistic approach to understanding these dynamics that includes plastic changes and plant community transformations and also extends beyond this single trophic level targeted by herbicides to the effects on non-target plant-associated organisms and their potential to evolve, thereby embracing the complexity of these real-world systems. We make explicit recommendations for future research to achieve this goal and specifically address impacts of ecology on evolution, evolution on ecology, and their feedbacks so that we can gain a more predictive view of the fates of herbicide-impacted communities. 
    more » « less
  5. Abstract

    To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade‐offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2on four hypothesized trade‐offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade‐off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2.In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2in two out of four milkweed species. Finally, previous exposure to elevated CO2uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade‐offs.

     
    more » « less