skip to main content


Title: Deep Narrowband Photometry of the M101 Group: Strong-line Abundances of 720 H ii Regions
Abstract

We present deep, narrowband imaging of the nearby spiral galaxy M101 and its satellites to analyze the oxygen abundances of their Hiiregions. Using Case Western Reserve University’s Burrell Schmidt telescope, we add to the narrowband data set of the M101 Group, consisting of Hα, Hβ, and [Oiii] emission lines and the blue [Oii]λ3727 emission line for the first time. This allows for complete spatial coverage of the oxygen abundance of the entire M101 Group. We used the strong-line ratioR23to estimate oxygen abundances for the Hiiregions in our sample, utilizing three different calibration techniques to provide a baseline estimate of the oxygen abundances. This results in ∼650 Hiiregions for M101, 10 Hiiregions for NGC 5477, and ∼60 Hiiregions for NGC 5474, the largest sample for this Group to date. M101 shows a strong abundance gradient, while the satellite galaxies present little or no gradient. There is some evidence for a flattening of the gradient in M101 beyondR∼ 14 kpc. Additionally, M101 shows signs of azimuthal abundance variations to the west and southwest. The radial and azimuthal abundance variations in M101 are likely explained by an interaction it had with its most massive satellite, NGC 5474, ∼300 Myr ago combined with internal dynamical effects such as corotation.

 
more » « less
Award ID(s):
1911909
NSF-PAR ID:
10387084
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 182
Size(s):
["Article No. 182"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The dispersion in chemical abundances provides a very strong constraint on the processes that drive the chemical enrichment of galaxies. Due to its proximity, the spiral galaxy M33 has been the focus of numerous chemical abundance surveys to study the chemical enrichment and dispersion in abundances over large spatial scales. The CHemical Abundances Of Spirals project has observed ∼100 Hiiregions in M33 with the Large Binocular Telescope (LBT), producing the largest homogeneous sample of electron temperatures (Te) and direct abundances in this galaxy. Our LBT observations produce a robust oxygen abundance gradient of −0.037 ± 0.007 dex kpc−1and indicate a relatively small (0.043 ± 0.015 dex) intrinsic dispersion in oxygen abundance relative to this gradient. The dispersions in N/H and N/O are similarly small, and the abundances of Ne, S, Cl, and Ar relative to O are consistent with the solar ratio as expected forα-process orα-process-dependent elements. Taken together, the ISM in M33 is chemically well-mixed and homogeneously enriched from inside out, with no evidence of significant abundance variations at a given radius in the galaxy. Our results are compared to those of the numerous studies in the literature, and we discuss possible contaminating sources that can inflate abundance dispersion measurements. Importantly, if abundances are derived from a singleTemeasurement andTeTerelationships are relied on for inferring the temperature in the unmeasured ionization zone, this can lead to systematic biases that increase the measured dispersion up to 0.11 dex.

     
    more » « less
  2. Abstract

    The Sloan Digital Sky Survey MaNGA program has now obtained integral field spectroscopy for over 10,000 galaxies in the nearby universe. We use the final MaNGA data release DR17 to study the correlation between ionized gas velocity dispersion and galactic star formation rate, finding a tight correlation in whichσHαfrom galactic Hiiregions increases significantly from ∼18–30 km s−1, broadly in keeping with previous studies. In contrast,σHαfrom diffuse ionized gas increases more rapidly from 20–60 km s−1. Using the statistical power of MaNGA, we investigate these correlations in greater detail using multiple emission lines and determine that the observed correlation ofσHαwith local star formation rate surface density is driven primarily by the global relation of increasing velocity dispersion at higher total star formation rate, as are apparent correlations with stellar mass. Assuming Hiiregion models consistent with our finding thatσ[OIII]<σHα<σ[O I], we estimate the velocity dispersion of the molecular gas in which the individual Hiiregions are embedded, finding valuesσMol= 5–30 km s−1consistent with ALMA observations in a similar mass range. Finally, we use variations in the relation with inclination and disk azimuthal angle to constrain the velocity dispersion ellipsoid of the ionized gasσz/σr= 0.84 ± 0.03 andσϕ/σr= 0.91 ± 0.03, similar to that of young stars in the Galactic disk. Our results are most consistent with the theoretical models in which turbulence in modern galactic disks is driven primarily by star formation feedback.

     
    more » « less
  3. Abstract

    We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

     
    more » « less
  4. Abstract

    We present maps tracing the fraction of dust in the form of polycyclic aromatic hydrocarbons (PAHs) in IC 5332, NGC 628, NGC 1365, and NGC 7496 from JWST/MIRI observations. We trace the PAH fraction by combining the F770W (7.7μm) and F1130W (11.3μm) filters to track ionized and neutral PAH emission, respectively, and comparing the PAH emission to F2100W, which traces small, hot dust grains. We find the averageRPAH= (F770W + F1130W)/F2100W values of 3.3, 4.7, 5.1, and 3.6 in IC 5332, NGC 628, NGC 1365, and NGC 7496, respectively. We find that Hiiregions traced by MUSE Hαshow a systematically low PAH fraction. The PAH fraction remains relatively constant across other galactic environments, with slight variations. We use CO+Hi+Hαto trace the interstellar gas phase and find that the PAH fraction decreases above a value ofIHα/ΣHI+H21037.5ergs1kpc2(Mpc2)1in all four galaxies. Radial profiles also show a decreasing PAH fraction with increasing radius, correlated with lower metallicity, in line with previous results showing a strong metallicity dependence to the PAH fraction. Our results suggest that the process of PAH destruction in ionized gas operates similarly across the four targets.

     
    more » « less
  5. Abstract

    Using deep near-infrared Keck/MOSFIRE observations, we analyze the rest-optical spectra of eight star-forming galaxies in the COSMOS and GOODS-N fields. We reach integration times of ∼10 hr in the deepest bands, pushing the limits on current ground-based observational capabilities. The targets fall into two redshift bins, of five galaxies atz∼ 1.7 and three galaxies atz∼ 2.5, and were selected as likely to yield significant auroral-line detections. Even with long integration times, detection of the auroral lines remains challenging. We stack the spectra together into subsets based on redshift, improving the signal-to-noise ratio on the [Oiii]λ4364 auroral emission line and, in turn, enabling a direct measurement of the oxygen abundance for each stack. We compare these measurements to commonly employed strong-line ratios alongside measurements from the literature. We find that the stacks fall within the distribution ofz> 1 literature measurements, but a larger sample size is needed to robustly constrain the relationships between strong-line ratios and oxygen abundance at high redshift. We additionally report detections of [Oi]λ6302 for nine individual galaxies and composite spectra of 21 targets in the MOSFIRE pointings. We plot their line ratios on the [Oiii]λ5008/Hβversus [Oi]λ6302/Hαdiagnostic diagram, comparing our targets to local galaxies and Hiiregions. We find that the [Oi]/Hαratios in our sample of galaxies are consistent with being produced in gas ionized byα-enhanced massive stars, as has been previously inferred for rapidly forming galaxies at early cosmic times.

     
    more » « less