skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broad-band ocean bottom seismometer noise properties
SUMMARY We present a new compilation and analysis of broad-band ocean bottom seismometer noise properties from 15 yr of seismic deployments. We compile a comprehensive data set of representative four-component (seismometer and pressure gauge) noise spectra and cross-spectral properties (coherence, phase and admittance) for 551 unique stations spanning 18 U.S.-led experiments. This is matched with a comprehensive compilation of metadata parameters related to instrumentation and environmental properties for each station. We systematically investigate the similarity of noise spectra by grouping them according to these metadata parameters to determine which factors are the most important in determining noise characteristics. We find evidence for improvements in similarity of noise properties when grouped across parameters, with groupings by seismometer type and deployment water depth yielding the most significant and interpretable results. Instrument design, that is the entire deployed package, also plays an important role, although it strongly covaries with seismometer and water depth. We assess the presence of traditional sources of tilt, compliance, and microseismic noise to characterize their relative role across a variety of commonly used seismic frequency bands. We find that the presence of tilt noise is primarily dependent on the type of seismometer used (covariant with a particular subset of instrument design), that compliance noise follows anticipated relationships with water depth, and that shallow, oceanic shelf environments have systematically different microseism noise properties (which are, in turn, different from instruments deployed in shallow lake environments). These observations have important implications for the viability of commonly used seismic analysis techniques. Finally, we compare spectra and coherences before and after vertical channel tilt and compliance noise removal to evaluate the efficacy and limitations of these now standard processing techniques. These findings may assist in future experiment planning and instrument development, and our newly compiled noise data set serves as a building block for more targeted future investigations by the marine seismology community.  more » « less
Award ID(s):
1658214 1658491 2051265
PAR ID:
10387151
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
233
Issue:
1
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 297-315
Size(s):
p. 297-315
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plate boundaries in the oceans are often poorly monitored. Though typically less remote than the deep sea, shallow marine environments with seafloor depths <0.5 km can be especially challenging for seismic experiments due to natural and anthropogenic hazards and noise sources that can affect instrument survival and data quality. The Queen Charlotte fault (QCF) is part of a transform plate boundary that follows the continental shelf of the Alaska Panhandle and central British Columbia. This fault system accommodates dextral slip between the Pacific and North American plates and has hosted several historic Mw > 7 earthquakes. In August 2021, we deployed 28 broadband ocean-bottom seismometers (OBSs) along the central QCF for the “Transform Obliquity along the Queen Charlotte Fault and Earthquake Study” (TOQUES) to investigate fault architecture and local seismicity. Deployment depths varied between 0.2 and 2.5 km below sea level, with half of the instruments deployed in shallow water (<0.5 km depth). We describe the scientific motivations for the TOQUES broadband OBS array, present data metrics, and discuss factors that influence data quality and instrument survival. We show that many opportunities exist for scientific study of shallow marine environments and the solid earth. Despite concerns that shallow water was responsible for the risk of data or instrument loss, direct relationships between instrument success and water depth are inconclusive. Rather, instrument success may be more related to the ability of different instrument designs to withstand shallow-water conditions. 
    more » « less
  2. Abstract The Alaska Amphibious Community Seismic Experiment (AACSE) is a shoreline-crossing passive- and active-source seismic experiment that took place from May 2018 through August 2019 along an ∼700  km long section of the Aleutian subduction zone spanning Kodiak Island and the Alaska Peninsula. The experiment featured 105 broadband seismometers; 30 were deployed onshore, and 75 were deployed offshore in Ocean Bottom Seismometer (OBS) packages. Additional strong-motion instruments were also deployed at six onshore seismic sites. Offshore OBS stretched from the outer rise across the trench to the shelf. OBSs in shallow water (<262  m depth) were deployed with a trawl-resistant shield, and deeper OBSs were unshielded. Additionally, a number of OBS-mounted strong-motion instruments, differential and absolute pressure gauges, hydrophones, and temperature and salinity sensors were deployed. OBSs were deployed on two cruises of the R/V Sikuliaq in May and July 2018 and retrieved on two cruises aboard the R/V Sikuliaq and R/V Langseth in August–September 2019. A complementary 398-instrument nodal seismometer array was deployed on Kodiak Island for four weeks in May–June 2019, and an active-source seismic survey on the R/V Langseth was arranged in June 2019 to shoot into the AACSE broadband network and the nodes. Additional underway data from cruises include seafloor bathymetry and sub-bottom profiles, with extra data collected near the rupture zone of the 2018 Mw 7.9 offshore-Kodiak earthquake. The AACSE network was deployed simultaneously with the EarthScope Transportable Array (TA) in Alaska, effectively densifying and extending the TA offshore in the region of the Alaska Peninsula. AACSE is a community experiment, and all data were made available publicly as soon as feasible in appropriate repositories. 
    more » « less
  3. null (Ed.)
    Abstract Vertical records of ocean-bottom seismographs (OBSs) are usually noisy at low frequencies, and one important noise source is the varying ocean-bottom pressure that results from ocean-surface water waves. The relation between the ocean-bottom pressure and the vertical seafloor motion, called the compliance pressure transfer function (PTF), can be derived using background seismic data. During an earthquake, earthquake signals also generate ocean-bottom pressure fluctuations, and the relation between the ocean-bottom pressure and the vertical seafloor motion is named the seismic PTF in this article. Conventionally, we use the whole pressure records and the compliance PTF to remove the compliance noise; the earthquake-induced pressure and the seismic PTF are ignored, which may distort the original signals. In this article, we analyze the data from 24 OBSs with water depth ranging from 107 to 4462 m. We find that for most stations, the investigated frequency range (0.01–0.2 Hz) can be divided into four bands depending on the water depth. In band (I) of lowest frequencies (<0.11, <0.05, and <0.02  Hz for water depth of 107, 1109, and 2650 m, respectively), the vertical seafloor acceleration is composed mostly of pressure compliance noise, which can be removed using the compliance PTF. The compliance PTF is much smaller than the seismic PTF, so distortion of earthquake signals is negligible. In band (II) of higher frequencies (0.11–0.20, 0.05–0.11, and 0.02–0.05 Hz for water depth of 107, 1109, and 2650 m, respectively), the vertical acceleration and ocean-bottom pressure are largely uncorrelated. In bands (III) and (IV) of even higher frequencies (>0.11 and >0.08  Hz for water depth of 1109 and 2650 m, respectively), the compliance noise is negligible, and the ocean-bottom pressure is mostly caused by the seafloor motion. Thus, the compliance can be safely ignored in frequency band (I). 
    more » « less
  4. Abstract On 3 May 2018, Kīlauea Volcano, one of the most active volcanoes in the world, entered a new eruptive phase because of a dike intrusion in the East Rift zone. One day later, an Mw 6.9 earthquake, which was likely trigged by the dike intrusion, occurred in the submarine south flank of Kīlauea Volcano. In mid-July, an ocean-bottom seismometer (OBS) array consisting of 12 stations was deployed on the submarine south flank of Kīlauea Volcano to monitor the aftershocks and lava–water interaction near the ocean entry. Eleven OBSs were recovered in mid-September. Preliminary evaluation of the data reveals a large number of seismic and acoustic events, which provide a valuable dataset for understanding flank deformation and stability as well as lava–water interaction. Here, we introduce this dataset and document notable instrument malfunctions along with some initial seismic and acoustic observations. 
    more » « less
  5. Abstract. Large subduction earthquakes can rupture the shallow part of the megathrust with unusually large displacements and tsunamis. The long duration of the seismic source and high upper-plate compliance contribute to large and protracted long-period motions of the outer upper plate. The resulting shear stress at the sediment–water interface in, for example, the Mw 9.0 2011 Tohoku–Oki earthquake could account for surficial sediment remobilization on the outer margin. We test this hypothesis by simulating in physical tank experiments the combined effects of high- and low-frequency seismic motions on sediment of different properties (chemistry, grain size, water content, and salinity). Our results show that low-frequency motion during a 2011-like earthquake can entrain several centimeters of surficial sediment and that entrainment can be enhanced by high-frequency vertical oscillations. These experiments validate a new mechanism of co-seismic sediment entrainment in deep-water environments. 
    more » « less