skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relative hindlimb length and hindlimb segmental proportions as indicators of locomotor category in primates, rodents, and tree shrews
Leaping is an important locomotor behavior for arboreal taxa such as primates, providing means to cross discontinuous substrates, escape predation, and/or capture prey. Primates that leap frequently have relatively longer hindlimbs than those taxa that leap less often. However, it is unknown if this pattern holds across a broader phylogenetic sample that includes non-primate arboreal taxa and non-primate specialized leapers. Here, we examine if relative hindlimb length and segmental proportions correlate with locomotor category across a sample of small-bodied (800g) mammals. Lengths of six hindlimb elements (summing to total hindlimb length) were measured on micro-computed tomography scans. Total hindlimb length was regressed against body mass to calculate relative hindlimb length. Segmental proportions were calculated as the ratio of femoral, tibial, and pedal (the sum of calcaneal, cuboidal, metatarsal, and phalangeal lengths) lengths to total hindlimb length. We found that while three arboreal/scansorial taxa (common marmosets, greater dwarf lemurs, and palm squirrels) exhibit short hindlimbs relative to their body mass, all other arboreal and scansorial taxa have relatively long hindlimbs. Most arboreal, scansorial, terrestrial, and fossorial taxa distribute length evenly across segments (femur, tibia, and pes each comprise 33% of total hindlimb length). Saltatorialists (e.g., jerboas and kangaroo rats) were the only locomotor group with exceptional proportions, with pedal segments contributing 38% of total hindlimb length. These results suggest to us that segmental proportions may distinguish specialized ricochetal hoppers from taxa that leap sporadically, while relative hindlimb length may predict general leaping ability across mammals.  more » « less
Award ID(s):
2020515
PAR ID:
10387267
Author(s) / Creator(s):
Date Published:
Journal Name:
American journal of biological anthropology
Volume:
S73
ISSN:
2692-7691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Powerful digital grasping is essential for primates navigating arboreal environments and is often regarded as a defining characteristic of the order. However,in vivodata on primate grip strength are limited. In this study, we collected grasping data from the hands and feet of eleven strepsirrhine species to assess how ecomorphological variables—such as autopodial shape, laterality, body mass and locomotor mode—influence grasping performance. Additionally, we derived anatomical estimates of grip force from cadaveric material to determine whetherin vivoandex vivogrip strength measurements follow similar scaling relationships and how they correlate. Results show that bothin vivoand anatomical grip strength scale positively with body mass, though anatomical measures may overestimatein vivoperformance. Species with wider autopodia tend to exhibit higher grip forces, and forelimb grip forces exceed those of the hindlimbs. No lateralization in grip strength was observed. While strepsirrhine grip forces relative to their body weight are comparable to those of other primates and slightly exceed those of humans, they are not exceptional compared to other arboreal mammals or birds, suggesting that claims of extraordinary primate grasping abilities require further investigation. 
    more » « less
  2. For the first 100+ million years of their evolutionary history, the majority of mammals were very small, and many exhibited relatively generalized locomotor ecologies. Among extant mammals, small-bodied, generalist species share similar hindlimb bone morphology and locomotor mechanics, but details of their musculature have not been investigated. To examine whether hindlimb muscle architecture properties are also similar, we dissected hindlimb muscles of the gray short-tailed opossum (Monodelphis domestica) and aggregated muscle properties from the literature for three other small-bodied mammals (Mus musculus, Rattus norvegicus, Cavia porcellus). We then studied hindlimb musculature from a whole-limb perspective and by separating the limb into nine anatomical regions. The region analysis explained substantially more variance in the data (r2: 0.601 > 0.074) but only detected six statistically significant pairwise species differences in muscle architecture properties. This finding suggests either deep conservation of therian hindlimb muscle properties or, more likely, a biomechanical constraint imposed by small body size. In addition, we find specialization for either large force production (i.e., PCSA) or longer active working ranges (i.e. long muscle fascicles) in proximal limb regions but neither specialization in more distal limb regions. This functional pattern may be key for small mammals to traverse across uneven and shifting substrates, regardless of environment. These findings are particularly relevant for researchers seeking to reconstruct and model soft tissue properties of extinct mammals during the early evolutionary history of the clade. 
    more » « less
  3. Abstract Several studies comparing primate locomotion under lab versus field conditions have shown the importance of implementing both types of studies, as each has their advantages and disadvantages. However, three‐dimensional (3D) motion capture of primates has been challenging under natural conditions. In this study, we provide a detailed protocol on how to collect 3D biomechanical data on primate leaping in their natural habitat that can be widely implemented. To record primate locomotion in the dense forest we use modified GoPro Hero Black cameras with zoom lenses that can easily be carried around and set up on tripods. We outline details on how to obtain camera calibrations at greater heights and how to process the collected data using the MATLAB camera calibration app and the motion tracking software DLTdv8a. We further developed a new MATLAB application “WildLeap3D” to generate biomechanical performance metrics from the derivedx,y,zcoordinates of the leaps. We provide details on how to collect data on support diameter, compliance, and orientation, and combine these with the jumps to study locomotor performance in an ecological context. We successfully reconstructed leaps of wild primates in the 3D space under natural conditions and provided data on four representative leaps. We provide exemplar data on primate velocity and acceleration during a leap and show how our protocol can be used to analyze segmental kinematics. This study will help to make motion capture of freely moving animals more accessible and help further our knowledge about animal locomotion and movement. 
    more » « less
  4. Abstract ObjectivesDespite qualitative observations of wild primates pumping branches before leaping across gaps in the canopy, most studies have suggested that support compliance increases the energetic cost of arboreal leaping, thus limiting leaping performance. In this study, we quantified branch pumping behavior and tree swaying in wild primates to test the hypothesis that these behaviors improve leaping performance. Materials and MethodsWe recorded wild colobine monkeys crossing gaps in the canopy and quantitatively tracked the kinematics of both the monkey and the compliant support during behavioral sequences. We also empirically measured the compliance of a sample of locomotor supports in the monkeys' natural habitat, allowing us to quantify the resonant properties of substrates used during leaping. ResultsAnalyses of three recordings show that adult red colobus monkeys (Piliocolobus tephrosceles) use branch compliance to their advantage by actively pumping branches before leaping, augmenting their vertical velocity at take‐off. Quantitative modeling of branch resonance periods, based on empirical measurements of support compliance, suggests that monkeys specifically employed branch pumping on relatively thin branches with protracted periods of oscillation. Finally, an additional four recordings show that both red colobus and black and white colobus monkeys (Colobus guereza) utilize tree swaying to cross large gaps, augmenting horizontal velocity at take‐off. DiscussionThis deliberate branch manipulation to produce a mechanical effect for stronger propulsion is consistent with the framework of instrumental problem‐solving. To our knowledge, this is the first study of wild primates which quantitatively shows how compliant branches can be used advantageously to augment locomotor performance. 
    more » « less
  5. Abstract Jumping allows arboreal mammals to navigate disparate canopy supports. Existing research suggests that the long, mobile limbs of many small primates—including basal primate ancestors—facilitate arboreal jumping performance by extending centre of mass (CoM) excursion during push-off, while reducing forces applied to the support to potentially improve stability on narrow, compliant branches. We test this premise using force platform and micro-CT analyses to compare the biomechanical strategies and corresponding body morphology modulating vertical jumping performance in Cheirogaleus medius (N = 3), a small arboreal primate, and Tupaia belangeri (N = 3), a similarly-sized semi-arboreal/terrestrial treeshrew (close relative to primates). As predicted, to increase take-off velocity (the primary determinant of jump height), T. belangeri prioritized force production and high mechanical power. This power-focused strategy corresponds with larger attachments and longer moment arms for hip and knee extensors. In contrast, C. medius prioritized CoM excursion over a longer push-off duration, a strategy enabled by their greater hip joint mobility. The ability to minimize force production in C. medius supports hypotheses of frequent use of narrow, compliant supports during early primate evolution, allowing early primates to jump more effectively and safely in a small branch milieu. 
    more » « less