We describe our methodology for classifying ASL (American Sign Language) gestures. Rather than operate directly on raw images of hand gestures, we extract coor-dinates and render wireframes from individual images to construct a curated training dataset. This dataset is then used in a classifier that is memory efficient and provides effective performance (94% accuracy). Because we con-struct wireframes that contain information about several angles in the joints that comprise hands, our methodolo-gy is amenable to training those interested in learning ASL by identifying targeted errors in their hand gestures.
more »
« less
An AI‑based Approach for Improved Sign Language Recognition using Multiple Videos
People with hearing and speaking disabilities face significant hurdles in communication. The knowledge of sign language can help mitigate these hurdles, but most people without disabilities, including relatives, friends, and care providers, cannot understand sign language. The availability of automated tools can allow people with disabilities and those around them to communicate ubiquitously and in a variety of situations with non-signers. There are currently two main approaches for recognizing sign language gestures. The first is a hardware-based approach, involving gloves or other hardware to track hand position and determine gestures. The second is a software-based approach, where a video is taken of the hands and gestures are classified using computer vision techniques. However, some hardware, such as a phone's internal sensor or a device worn on the arm to track muscle data, is less accurate, and wearing them can be cumbersome or uncomfortable. The software-based approach, on the other hand, is dependent on the lighting conditions and on the contrast between the hands and the background. We propose a hybrid approach that takes advantage of low-cost sensory hardware and combines it with a smart sign-recognition algorithm with the goal of developing a more efficient gesture recognition system. The Myo band-based approach using the Support Vector Machine method achieves an accuracy of only 49%. The software-based approach uses the Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) methods to train the Myo-based module and achieves an accuracy of over 80% in our experiments. Our method combines the two approaches and shows the potential for improvement. Our experiments are done with a dataset of nine gestures generated from multiple videos, each repeated five times for a total of 45 trials for both the software-based and hardware-based modules. Apart from showing the performance of each approach, our results show that with a more improved hardware module, the accuracy of the combined approach can be significantly improved
more »
« less
- Award ID(s):
- 1757641
- PAR ID:
- 10387277
- Date Published:
- Journal Name:
- Multimedia tools and applications
- Volume:
- 1
- ISSN:
- 1380-7501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we propose a machine learning-based multi-stream framework to recognize American Sign Language (ASL) manual signs and nonmanual gestures (face and head movements) in real time from RGB-D videos. Our approach is based on 3D Convolutional Neural Networks (3D CNNs) by fusing the multi-modal features including hand gestures, facial expressions, and body poses from multiple channels (RGB, Depth, Motion, and Skeleton joints). To learn the overall temporal dynamics in a video, a proxy video is generated by selecting a subset of frames for each video which are then used to train the proposed 3D CNN model. We collected a new ASL dataset, ASL-100-RGBD, which contains 42 RGB-D videos captured by a Microsoft Kinect V2 camera. Each video consists of 100 ASL manual signs, along with RGB channel, Depth maps, Skeleton joints, Face features, and HD face. The dataset is fully annotated for each semantic region (i.e. the time duration of each sign that the human signer performs). Our proposed method achieves 92.88% accuracy for recognizing 100 ASL sign glosses in our newly collected ASL-100-RGBD dataset. The effectiveness of our framework for recognizing hand gestures from RGB-D videos is further demonstrated on a large-scale dataset, ChaLearn IsoGD, achieving the state-of-the-art results.more » « less
-
null (Ed.)RF sensing based human activity and hand gesture recognition (HGR) methods have gained enormous popularity with the development of small package, high frequency radar systems and powerful machine learning tools. However, most HGR experiments in the literature have been conducted on individual gestures and in isolation from preceding and subsequent motions. This paper considers the problem of American sign language (ASL) recognition in the context of daily living, which involves sequential classification of a continuous stream of signing mixed with daily activities. In particular, this paper investigates the efficacy of different RF input representations and fusion techniques for ASL and trigger gesture recognition tasks in a daily living scenario, which can be potentially used for sign language sensitive human-computer interfaces (HCI). The proposed approach involves first detecting and segmenting periods of motion, followed by feature level fusion of the range-Doppler map, micro-Doppler spectrogram, and envelope for classification with a bi-directional long short-term memory (BiL-STM) recurrent neural network. Results show 93.3% accuracy in identification of 6 activities and 4 ASL signs, as well as a trigger sign detection rate of 0.93.more » « less
-
Sign language is a priceless means of communication for deaf and hard-of-hearing people to fully enable them to participate in society and interact with others. This study introduces a novel universal sign language system that uses the Gesture-script to generate a detailed description of gestures in videos, which involve continuous movement of hands, arms, heads, and body language. Subsequently, we input this description into a Large Language Model (LLM) to interpret sign language. We deployed a few-shot prompting technique for LLM, enabling it to precisely transfer the sign videos into corresponding sentences in natural language. Furthermore, the Few-shot prompting technique enables our system to interpret multiple types of sign language without pre-training or fine-tuning.more » « less
-
Sign languages are used as a primary language by approximately 70 million D/deaf people world-wide. However, most communication technologies operate in spoken and written languages, creating inequities in access. To help tackle this problem, we release ASL Citizen, the first crowdsourced Isolated Sign Language Recognition (ISLR) dataset, collected with consent and containing 83,399 videos for 2,731 distinct signs filmed by 52 signers in a variety of environments. We propose that this dataset be used for sign language dictionary retrieval for American Sign Language (ASL), where a user demonstrates a sign to their webcam to retrieve matching signs from a dictionary. Through our generalizable baselines, we show that training supervised machine learning classifiers with our dataset achieves competitive performance on metrics relevant for dictionary retrieval, with 63% accuracy and a recall-at-10 of 91%, evaluated entirely on videos of users who are not present in the training or validation sets.more » « less
An official website of the United States government

